

Lecture Presentation

Chapter 4

Chemical

Quantities and Aqueous Reactions

The Greenhouse Effect

- The greenhouse gases in the atmosphere
- allow sunlight to enter the atmosphere.
- warm Earth's surface.
- prevent some of the heat generated by the sunlight from escaping.

Earth

- The balance between incoming and outgoing energy from the sun determines Earth's average temperature.

Global Warming

- Scientists have measured an average $0.7^{\circ} \mathrm{C}$ rise in atmospheric temperature since 1860.
- During the same period, atmospheric CO_{2} levels have risen 38%.
- Are the two trends causal?

Atmospheric Carbon Dioxide

Global Temperature

Global Warming

- One source of CO_{2} is the combustion reactions of fossil fuels we use to get energy.
- Another source of CO_{2} is volcanic action.
- How can we judge whether global warming is natural or due to our use of fossil fuels?
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{I})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Reaction Stoichiometry: How Much Carbon

Dioxide?

- The balanced chemical equations for fossilfuel combustion reactions provide the exact relationships between the amount of fossil fuel burned and the amount of carbon dioxide emitted.
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{I})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- $16 \mathrm{CO}_{2}$ molecules are produced for every 2 molecules of octane burned.

Quantities in Chemical Reactions

- The amount of every substance used and made in a chemical reaction is related to the amounts of all the other substances in the reaction.
- Law of conservation of mass
- Balancing equations by balancing atoms
- The study of the numerical relationship between chemical quantities in a chemical reaction is called stoichiometry.

Reaction Stoichiometry

- The coefficients in a chemical reaction specify the relative amounts in moles of each of the substances involved in the reaction.
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{I})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- 2 molecules of $\mathrm{C}_{8} \mathrm{H}_{18}$ react with 25 molecules of O_{2} to form 16 molecules of CO_{2} and 18 molecules of $\mathrm{H}_{2} \mathrm{O}$.
- 2 moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ react with 25 moles of O_{2} to form 16 moles of CO_{2} and 18 moles of $\mathrm{H}_{2} \mathrm{O}$.
$2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}: 25 \mathrm{~mol} \mathrm{O}_{2}: 16 \mathrm{~mol} \mathrm{CO} 2: 18 \mathrm{~mol} \mathrm{H} \mathrm{O}$

Making Pizza

- The number of pizzas you can make depends on the amount of the ingredients you use.

1 crust + 5 oz tomato sauce $\mathbf{+} \mathbf{2}$ cups cheese $\rightarrow \mathbf{1}$ pizza
This relationship can be expressed mathematically.

1 crust : $\mathbf{5}$ oz sauce : $\mathbf{2}$ cups cheese : $\mathbf{1}$ pizza

- We can compare the amount of pizza that can be made from 10 cups of cheese:
2 cups cheese : 1 pizza, then,

$$
10 \text { cups eheese } \times \frac{1 \text { pizza }}{2 \text { cups cheese }}=5 \text { pizzas }
$$

Making Molecules: Mole-to-Mole Conversions

- We use the ratio from the balanced chemical equation in the same way that we used the ratio from the pizza recipe.

The ratio of the coefficients acts as a conversion factor between the amount in moles of the reactants and products.

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{I})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

stoichiometric ratio: 2 moles $\mathrm{C}_{8} \mathrm{H}_{18}$: 16 moles CO_{2}

The ratio acts as a conversion factor between the amount in moles of the reactant, $\mathrm{C}_{8} \mathrm{H}_{18}$, and the amount in moles of the product, CO_{2}.

Mole-to-Mole Conversions

- Suppose we burn 22.0 moles of $\mathrm{C}_{8} \mathrm{H}_{18}$; how many moles of CO_{2} form?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(I)+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)
$$ stoichiometric ratio: 2 moles $\mathrm{C}_{8} \mathrm{H}_{18}$: 16 moles CO_{2}

$$
22.0 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18} \times \frac{16 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}=176 \mathrm{~mol} \mathrm{CO} 2
$$

- The combustion of 22.0 moles of $\mathrm{C}_{8} \mathrm{H}_{18}$ adds 176 moles of CO_{2} to the atmosphere.

Making Molecules: Mass-to-Mass Conversions

- The world burned the equivalent of $3.7 \times 10^{15} \mathrm{~g}$ of gasoline (octane) in 2013. We can estimate the mass of CO_{2} produced based on the flow chart below.


```
Amount B (in moles)
```


Mass B

- We use molar mass as a conversion factor between the mass given and amount in moles.
- We use coefficients as the conversion factor between the reactant, $\mathrm{C}_{8} \mathrm{H}_{18}$, and the amount in moles of the product, CO_{2}, and then molar mass as the conversion factor to get the mass of CO_{2} produced.

Mass-to-Mass Conversions

- If we burn $3.7 \times 10^{15} \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$, how many grams of CO_{2} form?

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(I)+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g)
$$

molar mass: $\mathrm{C}_{8} \mathrm{H}_{18} 114.22 \mathrm{~g} / \mathrm{mol}, \mathrm{CO}_{2} 44.01 \mathrm{~g} / \mathrm{mol}$ stoichiometric ratio: 2 moles $\mathrm{C}_{8} \mathrm{H}_{18}$: 16 moles CO_{2}
$22.0 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18} \times \frac{16 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{C}_{8} \mathrm{H}_{18}}=176 \mathrm{~mol} \mathrm{CO}_{2}$

- The combustion $3.7 \times 10^{15} \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{18}$ adds $1.1 \times 10^{16} \mathrm{~g} \mathrm{CO}_{2}$ to the atmosphere.

Limiting Reactant, Theoretical Yield, Percent Yield

- Recall our pizza recipe:
$\mathbf{1}$ crust + $\mathbf{5}$ oz tomato sauce + $\mathbf{2}$ cups cheese $\rightarrow \mathbf{1}$ pizza
- If we have 4 crusts, 10 cups of cheese, and 15 oz tomato sauce, how many pizzas can we make?
We have enough crusts to make 4 crusts $\times \frac{1 \text { pizza }}{1 \text { crust }}=4$ pizzas
We have enough cheese to make 10 cups chesese $\times \frac{1 \text { pizaa }}{2 \text { cups cheese }}=5$ pizzas
We have enough tomato sauce to make

Limiting reactant
Smallest number of pizzas

Limiting Reactant

- We have enough crusts for four pizzas, enough cheese for five pizzas, but enough tomato sauce for only three pizzas.
- We can make only three pizzas. The tomato sauce limits how many pizzas we can make.

Theoretical Yield

- Tomato sauce is the limiting reactant, the reactant that makes the least amount of product.
- The limiting reactant is also known as the limiting reagent.
- The maximum number of pizzas we can make depends on this ingredient. In chemical reactions, we call this the theoretical yield.
- This is the amount of product that can be made in a chemical reaction based on the amount of limiting reactant.
- The ingredient that makes the least amount of pizza determines how many pizzas you can make (theoretical yield).

Percent Yield

Assume that while making pizzas, we burn a pizza, drop one on the floor, or other uncontrollable events happen so that we make only two pizzas. The actual amount of product made in a chemical reaction is called the actual yield.

We can determine the efficiency of making pizzas by calculating the percentage of the maximum number of pizzas we actually make. In chemical reactions, we call this the percent yield.

Actual yield

In a Chemical Reaction

- For reactions with multiple reactants, it is likely that one of the reactants will be completely used before the others.
- When this reactant is used up, the reaction stops and no more product is made.
- The reactant that limits the amount of product is called the limiting reactant.
- It is sometimes called the limiting reagent.
- The limiting reactant gets completely consumed.
- Reactants not completely consumed are called excess reactants.
- The amount of product that can be made from the limiting reactant is called the theoretical yield.

Summarizing Limiting Reactant and Yield

- The limiting reactant (or limiting reagent) is the reactant that is completely consumed in a chemical reaction and limits the amount of product.
- The reactant in excess is any reactant that occurs in a quantity greater than is required to completely react with the limiting reactant.

Summarizing Limiting Reactant and Yield

- The theoretical yield is the amount of product that can be made in a chemical reaction based on the amount of limiting reactant.
- The actual yield is the amount of product actually produced by a chemical reaction.
- The percent yield is calculated as follows:
$\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

Calculating Limiting Reactant, Theoretical Yield, and Percent Yield

- Recall our balanced equation for the combustion of methane:

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

- Our balanced equation for the combustion of methane implies that every one molecule of CH_{4} reacts with two molecules of O_{2}.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

Combustion of Methane

- If we have five molecules of CH_{4} and eight molecules of O_{2}, which is the limiting reactant?
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- First we calculate the number of CO_{2} molecules that can be made from five CH_{4} molecules.

$$
5 \mathrm{CHA}_{4} \times \frac{1 \mathrm{CO}_{2}}{1 \mathrm{CHA}_{4}}=5 \mathrm{CO}_{2}
$$

Combustion of Methane

- Then we calculate the number of CO_{2} molecules that can be made from eight O_{2} molecules.

- We have enough CH_{4} to make five CO_{2} molecules and four CO_{2} molecules.
- Therefore, O_{2} is the limiting reactant, and four CO_{2} molecules is the theoretical yield.
- CH_{4} is in excess.

Calculating Limiting Reactant, Theoretical Yield, and Percent Yield from Reactant Masses

- When working in the lab, we normally measure reactant quantities in grams.
- To find the limiting reactant and theoretical yield, we must first convert grams to moles.

Calculating Limiting Reactant, Theoretical Yield, and Percent Yield from Reactant Masses

- A reactant mixture contains 42.5 g Mg and $33.8 \mathrm{~g} \mathrm{O}_{2}$. What is the limiting reactant and theoretical yield?

$$
2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \rightarrow \mathbf{2} \mathrm{MgO}(s)
$$

Calculating Limiting Reactant, Theoretical Yield, and Percent Yield from Reactant Masses

Solution Concentration and Solution Stoichiometry

- When table salt is mixed with water, it seems to disappear or become a liquid; the mixture is homogeneous.
- The salt is still there, as you can tell from the taste or simply boiling away the water.
- Homogeneous mixtures are called solutions.
- The majority component is the solvent.
- The minority component is the solute.
- A solution in which water is the solvent is an aqueous solution.

Solution Concentration

- Because solutions are mixtures, the composition can vary from one sample to another.
- Pure substances have constant composition.
- Saltwater samples from different seas or lakes have different amounts of salt.
- So, to describe solutions accurately, we quantify the amount of solute relative to solvent, or concentration of solution.

Solution Concentration

- Solutions are often described quantitatively, as dilute or concentrated.
- Dilute solutions have a small amount of solute compared to solvents.
- Concentrated solutions have a large amount of
 solute compared to solvents.

Solution Concentration: Molarity

- A common way to express solution concentration is molarity (M).
- Molarity is the amount of solute (in moles) divided by the volume of solution (in liters).

$$
\text { Molarity }(\mathrm{M})=\frac{\text { amount of solute }(\text { in mol })}{\text { volume of solution (in L) }}
$$

Preparing 1 L of a 1.00 M NaCl Solution

Preparing a Solution of Specified Concentration

Using Molarity in Calculations

- We can use the molarity of a solution as a conversion factor between moles of the solute and liters of the solution.
- For example, a 0.500 M NaCl solution contains 0.500 mol NaCl for every liter of solution.

L solution

Solution Dilution

- Often, solutions are stored as concentrated stock solutions.
- To make solutions of lower concentrations from these stock solutions, more solvent is added.
- The amount of solute doesn't change, just the volume of solution:
moles solute in solution $1=$ moles solute in solution 2
- The concentrations and volumes of the stock and new solutions are inversely proportional:

$$
M_{1} \cdot V_{1}=M_{2} \cdot V_{2}
$$

Preparing 3.00 L of $0.500 \mathrm{M} \mathrm{CaCl}_{2}$ from a 10.0 M Stock Solution

Solution Stoichiometry

- Because molarity relates the moles of solute to the liters of solution, it can be used to convert between amount of reactants and/or products in a chemical reaction.
- The general conceptual plan for these kinds of calculations begins with the volume of a reactant or product.

Concentrated and Dilute Solutions

Types of Aqueous Solutions and Solubility

- Consider two familiar aqueous solutions: saltwater and sugar water.
- Saltwater is a homogeneous mixture of NaCl and $\mathrm{H}_{2} \mathrm{O}$.
- Sugar water is a homogeneous mixture of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ and $\mathrm{H}_{2} \mathrm{O}$.
- As you stir either of these two substances into the water, it seems to disappear.
- How do solids such as salt and sugar dissolve in water?

What Happens When a Solute Dissolves?

- There are attractive forces between the solute particles holding them together.
- There are also attractive forces between the solvent molecules.
- When we mix the solute with the solvent, there are attractive forces between the solute particles and the solvent molecules.
- If the attractions between solute and solvent are strong enough, the solute will dissolve.

Charge Distribution in a Water Molecule

- There is an uneven distribution of electrons within the water molecule.
- This causes the oxygen side of the molecule to have a partial negative charge (δ^{-}) and the hydrogen side to have a partial positive charge (δ^{+}).

Solute and Solvent Interactions in a Sodium Chloride Solution

- When sodium chloride is put into water, the attraction of Na^{+}and Cl^{-}ions to water molecules competes with the attraction among the oppositely charged ions themselves.

Interactions in a Sodium Chloride Solution

Solute-solute interactions

Dissolution of Ionic Compounds

- Each ion is attracted to the surrounding water molecules and pulled off and away from the crystal.
- When it enters the solution, the ion is surrounded by water molecules, insulating it from other ions.
- The result is a solution
 with free-moving, charged particles able to conduct electricity.

Electrolyte and Nonelectrolyte Solutions

- Materials that dissolve in water to form a solution containing ions will conduct electricity. These are called electrolytes.
- Materials that dissolve in water to form a solution with no ions will not conduct electricity. These are called nonelectrolytes.
- A solution of salt (an electrolyte) conducts

Salt
solution
Conducts current
 electrical current. A solution of sugar (a nonelectrolyte) does not.

Electrolyte and Nonelectrolyte Solutions

- Ionic substances, such as sodium chloride, that completely dissociate into ions when they dissolve in water, are strong electrolytes.
- Except for acids, most molecular compounds, for example sugar, dissolve in water as intact molecules, or nonelectrolytes.
- Acids ionize to varying degrees in water. Those that completely ionize are strong acids. Those that don't are weak acids.

Strong electrolyte

Weak acid

Sugar Dissolution in Water

Interactions between Sugar and Water Molecules

Sugar Solution

Acids

- Acids are molecular compounds that ionize when they dissolve in water.
- The molecules are pulled apart by their attraction for the water.
- When acids ionize, they form H^{+}cations and also anions.
- The percentage of molecules that ionize varies from one acid to another.
- Acids that ionize virtually 100% are called strong acids.

$$
\mathrm{HCl}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- Acids that only ionize a small percentage are called weak acids.

$$
\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

Strong and Weak Electrolytes

- Strong electrolytes are materials that dissolve completely as ions.
- lonic compounds and strong acids.
- Solutions are good conductors of electricity.
- Weak electrolytes are materials that dissolve mostly as molecules but partially as ions.
- Weak acids.
- Solutions conduct electricity, but not well.

Dissociation and Ionization

- When ionic compounds dissolve in water, the anions and cations are separated from each other. This is called dissociation.

$$
\mathrm{Na}_{2} \mathrm{~S}(a q) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{S}^{2-}(\mathrm{aq})
$$

- When compounds containing polyatomic ions dissociate, the polyatomic group stays together as one ion.

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}(a q) \rightarrow 2 \mathrm{Na}^{+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)
$$

- When strong acids dissolve in water, the molecule ionizes into H^{+}and anions.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

Classes of Dissolved Materials

Electrolytic Properties of Solutions

The Solubility of Ionic Compounds

- When an ionic compound dissolves in water, the resulting solution contains not the intact ionic compound itself but its component ions dissolved in water.
- However, not all ionic compounds dissolve in water. For example, AgCl remains solid and appears as a white powder at the bottom of the water.
- In general, a compound is termed soluble if it dissolves in water and insoluble if it does not.

Solubility of Salts

- If we mix solid AgNO_{3} with water, it dissolves and forms a strong electrolyte solution.
- Silver chloride, on the other hand, is almost completely insoluble.
- If we mix solid AgCl with water, virtually all of it remains as a solid within the liquid water.

Soluble

Insoluble

When Will a Salt Dissolve?

- Whether a particular compound is soluble or insoluble depends on several factors.
- Predicting whether a compound will dissolve in water is not easy.
- The best way to do it is to conduct experiments to test whether a compound will dissolve in water, and then develop some rules based on those experimental results.
- We call this method the empirical method.

Solubility Rules

TABLE 4.1 Solubility Rules for Ionic Compounds in Water

Compounds Containing the Following Ions Are Generally Soluble	Exceptions
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, and NH_{4}^{+}	None
$\mathrm{NO}_{3}{ }^{-}$and $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	None
$\mathrm{Cl}^{-}, \mathrm{Br}^{-}$, and I^{-}	When these ions pair with $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, or Pb^{2+}, the resulting compounds are insoluble.
$\mathrm{SO}_{4}{ }^{2-}$	When $\mathrm{SO}_{4}{ }^{2-}$ pairs with $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Ag}^{+}$, or Ca^{2+}, the resulting compound is insoluble.
Compounds Containing the Following Ions Are Generally Insoluble	Exceptions
OH^{-}and S^{2-}	When these ions pair with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, or $\mathrm{NH}_{4}{ }^{+}$, the resulting compounds are soluble.
	When S^{2-} pairs with $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, or Ba^{2+}, the resulting compound is soluble.
	When OH^{-}pairs with $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, or Ba^{2+}, the resulting compound is slightly soluble.
$\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{PO}_{4}{ }^{3-}$	When these ions pair with $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, or $\mathrm{NH}_{4}{ }^{+}$, the resulting compounds are soluble.

Precipitation Reactions

- Precipitation reactions are reactions in which a solid forms when we mix two solutions.
- Reactions between aqueous solutions of ionic compounds produce an ionic compound that is insoluble in water.
- The insoluble product is called a precipitate.

Precipitation of Lead(II) lodide

Precipitation Reaction

No Precipitation Means No Reaction

- Precipitation reactions do not always occur when two aqueous solutions are mixed.
- Nothing happens when combining solutions of KI and NaCl .

$\mathrm{KI}(a q)+\mathrm{NaCl}(a q) \rightarrow$ No Reaction

Predicting Precipitation Reactions

1. Determine what ions each aqueous reactant has.
2. Determine formulas of possible products.

- Exchange ions.
- (+) ion from one reactant with (-) ion from other
- Balance charges of combined ions to get the formula of each product.

3. Determine solubility of each product in water.

- Use the solubility rules.
- If the product is insoluble or slightly soluble, it will precipitate.

4. If neither product will precipitate, write no reaction after the arrow.

Predicting Precipitation Reactions
5. If any of the possible products are insoluble, write their formulas as the products of the reaction using (s) after the formula to indicate solid. Write any soluble products with (aq) after the formula to indicate aqueous.
6. Balance the equation.

- Remember to change only coefficients, not subscripts.

Predicting Precipitation Reactions

Original compounds
Possible products

KNO_{3}
PbI_{2}

Representing Aqueous Reactions

- An equation showing the complete neutral formulas for each compound in the aqueous reaction as if they existed as molecules is called a molecular equation.
$2 \mathrm{KOH}(\mathrm{aq})+\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow 2 \mathrm{KNO}_{3}(a q)+\mathrm{Mg}(\mathrm{OH})_{2}(s)$
- In actual solutions of soluble ionic compounds, dissolved substances are present as ions. Equations that describe the nature of the dissolved species in solution are called complete ionic equations.

Rules for Writing a Complete Ionic Equation

- Aqueous strong electrolytes (soluble salts, strong acids, strong bases) are written as ions.
- Insoluble substances, weak electrolytes, and nonelectrolytes are written in molecule form.
- Solids, liquids, and gases are not dissolved, hence molecule form

$$
\left.\begin{array}{rl}
2 \mathrm{~K}^{+}{ }_{(a q)} & +2 \mathrm{OH}^{-}{ }_{(a q)}+\mathrm{Mg}^{2+}{ }_{(a q)}
\end{array}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)} \rightarrow \text { } \mathrm{K}_{(\text {(aq) }}+2 \mathrm{NO}_{3}{ }_{(a q)}+\mathrm{Mg}(\mathrm{OH})_{2(s)}\right)
$$

Ionic Equation

- Notice that in the complete ionic equation, some of the ions in solution appear unchanged on both sides of the equation.
- These ions are called spectator ions because they do not participate in the reaction (soluble salts, strong acids, and strong bases).

Net Ionic Equation

- An ionic equation in which the spectator ions are removed is called a net ionic equation.

$$
\begin{gathered}
2 \mathrm{KK}_{(a q)}^{+}+2 \mathrm{OH}^{-}{ }_{(a q)}+\mathrm{Mg}^{2+}{ }_{(a q)}+2 \mathrm{~K}_{3}^{+}{ }_{(\text {aq) }}^{-}+2 \mathrm{NQ}_{3}^{-}{ }_{(a q)}+\mathrm{Mg}(\mathrm{OH})_{2(s)} \rightarrow
\end{gathered}
$$

- The net ionic equation is $2 \mathrm{OH}^{-}{ }_{(a q)}+\mathrm{Mg}^{2+}{ }_{(a q)} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(s)}$

Examples

- Write the ionic and net ionic equation for each of the following:

1. $\mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{AgNO}_{3}(a q) \rightarrow 2 \mathrm{KNO}_{3}(a q)+\mathrm{Ag}_{2} \mathrm{SO}_{4}(s)$

$$
\begin{gathered}
2 \mathrm{~K}^{+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q)+2 \mathrm{Ag}^{+}(a q)+2 \mathrm{NO}_{3}{ }^{-}(a q) \rightarrow \\
2 \mathrm{~K}^{+}(a q)+2 \mathrm{NO}_{3}{ }^{-}(a q)+\mathrm{Ag}_{2} \mathrm{SO}_{4}(s) \\
2 \mathrm{Ag}^{+}(a q)+\mathrm{SO}_{4}{ }^{2-}(a q) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(s)
\end{gathered}
$$

2. $\mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+2 \mathrm{HCl}(a q) \rightarrow 2 \mathrm{NaCl}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}($ ($)$

$$
2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow
$$

$$
2 \mathrm{Na}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\Omega)
$$

$$
\mathrm{CO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(I)
$$

Acid-Base and Gas-Evolution Reactions

- Two other important classes of reactions that occur in aqueous solution are

1. acid-base reactions and
2. gas-evolution reactions.

- Acid-base reaction:
- An acid-base reaction is also called a neutralization reaction.
- An acid reacts with a base, and the two neutralize each other, producing water (or in some cases a weak electrolyte).

Acid-Base and Gas-Evolution Reactions

- In a gas-evolution reaction, a gas is produced, resulting in bubbling.
- In both acid-base and gas-evolution reactions, as in precipitation reactions, the reactions occur when the anion from one reactant combines with the cation of the other.
- Many gas-evolution reactions are also acid-base reactions.

Acid-Base Reactions

Arrhenius Definitions:

- Acid: Substance that produces H^{+}in aqueous solution. $\mathrm{HCl}(a q) \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
- In solution, H^{+}bonds with water to produce the hydronium ion, $\mathrm{H}_{3} \mathrm{O}+$.
- Polyprotic acids contain more than one ionizable proton and release them sequentially.
- The first ionizable proton is strong while subsequent ionizable protons are weak.
- Base: Substance that produces OH^{-}ions in aqueous solution.
$\left.\mathrm{NaOH}(a q) \sqrt{\mathrm{Na}^{+}(a} \mathbf{a}\right)+\mathrm{OH}^{-}(a q)$

Acid-Base Reactions

- These reactions are called neutralization reactions because the acid and base neutralize each other's properties.
$2 \mathrm{HNO}_{3}(a q)+\mathrm{Ca}(\mathrm{OH})_{2}(a q) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\Omega)$
- The net ionic equation for an acid-base reaction is $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}()$
- As long as the salt that forms is soluble in water.

Acids and Bases in Solution

- Acids ionize in water to form H^{+}ions.
- More precisely, the H^{+}from the acid molecule is donated to a water molecule to form hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$.
- Most chemists use H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$interchangeably.
- Bases dissociate in water to form OH^{-}ions.
- Bases, such as NH_{3}, that do not contain OH^{-}ions, produce OH^{-}by pulling H^{+}off water molecules.
- In the reaction of an acid with a base, the H^{+}from the acid combines with the OH^{-}from the base to make water.
- The cation from the base combines with the anion from the acid to make the salt.

$$
\begin{array}{cccc}
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) & \longrightarrow & \mathrm{H}_{2} \mathrm{O}(l)+\underset{\text { WaCl }}{\mathrm{Naq})} \\
\text { Acid } & \text { Base } & \text { Water } & \text { Salt }
\end{array}
$$

Acid-Base Reaction

- $\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}()$

Acid-Base Reaction

Some Common Acids and Bases

TABLE 4.2 Some Common Acids and Bases

Name of Acid	Formula	Name of Base	Formula
Hydrochloric acid	HCl	Sodium hydroxide	NaOH
Hydrobromic acid	HBr	Lithium hydroxide	LiOH
Hydroiodic acid	HI	Potassium hydroxide	KOH
Nitric acid	HNO_{3}	Calcium hydroxide	$\mathrm{Ca}(\mathrm{OH})_{2}$
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Barium hydroxide	$\mathrm{Ba}(\mathrm{OH})_{2}$
Perchloric acid	HClO_{4}	Ammonia*	$\mathrm{NH}_{3}($ weak base $)$
Formic acid	HCHO_{2} (weak acid)		
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ (weak acid)		
Hydrofluoric acid	HF (weak acid)		

*Ammonia does not contain OH^{-}, but it produces OH^{-}in a reaction with water that occurs only to a small extent: $\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(I) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$.

Predict the Product of the Reactions

1. $\mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \rightarrow$

$$
\begin{gathered}
\left(\mathrm{H}^{+}+\mathrm{Cl}^{-}\right)+\left(\mathrm{Ba}^{2+}+\mathrm{OH}^{-}\right) \rightarrow\left(\mathrm{H}^{+}+\mathrm{OH}^{-}\right)+\left(\mathrm{Ba}^{2+}+\mathrm{Cl}^{-}\right) \\
\mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{BaCl}_{2} \\
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{BaCl}_{2}(\mathrm{aq})
\end{gathered}
$$

2. $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{LiOH}(a q) \rightarrow$

$$
\begin{gathered}
\left(\mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}\right)+\left(\mathrm{Li}^{+}+\mathrm{OH}^{-}\right) \rightarrow\left(\mathrm{H}^{+}+\mathrm{OH}^{-}\right)+\left(\mathrm{Li}^{+}+\mathrm{SO}_{4}{ }^{2-}\right) \\
\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{LiOH}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{Li}_{2} \mathrm{SO}_{4} \\
\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{LiOH}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\Lambda)+\mathrm{Li}_{2} \mathrm{SO}_{4}(a q)
\end{gathered}
$$

Acid-Base Titrations

- A titration is a laboratory procedure where a substance in a solution of known concentration (titration) is reacted with another substance in a solution of unknown concentration (analyte).
- The equivalence point is the point in the titration when the H^{+}and OH^{-}from reactants are in their stoichiometric ratio and are completely reacted.
- An indicator is a dye whose color depends on the acidity or basicity of solution.

Acid-Base Titration

Acid-Base Titration

In this titration, NaOH is added to a dilute HCl solution. When the NaOH and HCl reach stoichiometric proportions (the equivalence point), the phenolphthalein indicator changes color to pink.

Gas-Evolving Reactions

- Some reactions form a gas directly from the ion exchange. $\mathrm{K}_{2} \mathrm{~S}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(a q)+\mathrm{H}_{2} \mathrm{~S}(g)$
- Other reactions form a gas by the subsequent decomposition of one of the ion exchange products into a gas and water.
$\mathrm{NaHCO}_{3}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{CO}_{3}(a q)$

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{CO}_{2}(g)
$$

Gas-Evolution Reaction

Gas-Evolution Reaction
$\mathrm{NaHCO}_{3}(a q)+\mathrm{HCl}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(a q)+\mathrm{CO}_{2}(g)$
When aqueous sodium bicarbonate is mixed with aqueous hydrochloric
acid, gaseous CO_{2} bubbles are the result of the reaction.

Types of Compounds That Undergo GasEvolution Reactions

TABLE 4.3 Types of Compounds That Undergo Gas-Evolution Reactions

Reactant Type	Intermediate Product	Cas Evolved	Example
Sulfides	None	$\mathrm{H}_{2} \mathrm{~S}$	$2 \mathrm{HCl}(a q)+\mathrm{K}_{2} \mathrm{~S}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{KCl}(a q)$
Carbonates and bicarbonates	$\mathrm{H}_{2} \mathrm{CO}_{3}$	CO_{2}	$2 \mathrm{HCl}(a q)+\mathrm{K}_{2} \mathrm{CO}_{3}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)+2 \mathrm{KCl}(a q)$
Sulfites and bisulfites	$\mathrm{H}_{2} \mathrm{SO}_{3}$	SO_{2}	$2 \mathrm{HCl}(a q)+\mathrm{K}_{2} \mathrm{SO}_{3}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{SO}_{2}(g)+2 \mathrm{KCl}(a q)$
Ammonium	$\mathrm{NH}_{4} \mathrm{OH}$	NH_{3}	$\mathrm{NH}_{4} \mathrm{Cl}(a q)+\mathrm{KOH}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{NH}_{3}(g)+\mathrm{KCl}(a q)$

Oxidation-Reduction Reactions

- The reactions in which electrons are transferred from one reactant to the other are called oxidation-reduction reactions, or redox reactions.
- Many redox reactions involve the reaction of a substance with oxygen.

$$
\begin{gathered}
4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \text { (rusting) } \\
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{I})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \\
16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
(\text { combustion) }
\end{gathered}
$$

Combustion as Redox

$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)$

Oxidation-Reduction Reaction

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Hydrogen and oxygen react to form gaseous water.

Redox without Combustion

$2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)$

Oxidation-Reduction Reaction without Oxygen

Reactions of Metals with Nonmetals

- Consider the following reactions:

$$
\begin{aligned}
& 4 \mathrm{Na}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(s) \\
& 2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)
\end{aligned}
$$

- The reactions involve a metal reacting with a nonmetal.
- In addition, both reactions involve the conversion of free elements into ions.

$$
\begin{gathered}
4 \mathrm{Na}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}^{2-}(s) \\
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}^{-}(s)
\end{gathered}
$$

Redox Reaction

- Electron transfer does not need to be a complete transfer for the reaction to qualify as oxidationreduction. Example: $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) 2 \longrightarrow \mathrm{HCl}(g)$
- There is uneven sharing of electrons when hydrogen bonds to chlorine, resulting in an increase of electron density (reduction) for chlorine and a decrease in electron density (oxidation) for hydrogen.

$$
\begin{aligned}
& \text { Hydrogen loses electron density } \\
& \text { (oxidation) and chlorine gains } \\
& \text { electron density (reduction). }
\end{aligned}
$$

Oxidation and Reduction

- To convert a free element into an ion, the atom must gain or lose electrons.
- If one atom loses electrons, another atom must accept them.
- Reactions where electrons are transferred from one atom to another are redox reactions.
- Atoms that lose electrons are being oxidized, while atoms that gain electrons are being reduced.

$$
\begin{gathered}
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}^{-}(s) \\
\mathrm{Na} \rightarrow \mathrm{Na}^{+}+1 \mathrm{e}^{-} \text {(oxidation) } \\
\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} \text {(reduction) }
\end{gathered}
$$

Oxidation States

- For reactions that are not metal + nonmetal or do not involve O_{2}, we need a method for determining how the electrons are transferred.
- Chemists assign a number to each element in a reaction called an oxidation state that allows them to determine the electron flow in the reaction.
- Even though they look like them, oxidation states are not ion charges!
- Oxidation states are imaginary charges assigned based on a set of rules.
- Ion charges are real, measurable charges.

Rules for Assigning Oxidation States

The following rules are in order of priority:

1. Free elements have an oxidation state $=0$.
$\mathrm{Na}=0$ and $\mathrm{Cl}_{2}=0$ in $2 \mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
2. Monatomic ions have an oxidation state equal to their charge.

In $\mathrm{NaCl} \mathrm{Na}=+1$ and $\mathrm{Cl}=\mathbf{- 1}$
3. (a) The sum of the oxidation states of all the atoms in a compound is 0 .
$\mathrm{Na}=+1$ and $\mathrm{Cl}=-1$ in $\mathrm{NaCl},(+1)+(-1)=0$

Rules for Assigning Oxidation States
(b) The sum of the oxidation states of all the atoms in a polyatomic ion equals the charge on the ion.
$\mathrm{N}=+5$ and $\mathrm{O}=-2$ in $\mathrm{NO}_{3}^{-},(+5)+3(-2)=-1$
4. (a) Group I metals have an oxidation state of +1 in all of their compounds.
$\mathrm{Na}=+1$ in NaCl
(b) Group II metals have an oxidation state of +2 in all of their compounds.
$\mathrm{Mg}=+2$ in MgCl_{2}

Rules for Assigning Oxidation States

5. In their compounds, nonmetals have oxidation states according to the table below.
Nonmetals higher on the table take priority.

Nonmetal	Oxidation State	Example
Fluorine	-1	MgF_{2} -1 ox state
Hydrogen	+1	$\mathrm{H}_{2} \mathrm{O}$ +1 ox state
Oxygen	-2	CO_{2} -2 ox state
Group 7A	-1	CCl_{4} -1 ox state
Group 6A	-2	$\mathrm{H}_{2} \mathrm{~S}$ -2 ox state
Group 5A	-3	NH_{3} -3 ox state

- Oxidation: An increase in oxidation state
- Reduction: A decrease in oxidation state

	$\mathrm{C}+2 \mathrm{~S} \longrightarrow \mathrm{CS}_{2}$
Oxidation states:	+4-2
	Reduction \uparrow
	\square Oxidation

- Carbon changes from an oxidation state of 0 to an oxidation state of +4 .
- Carbon loses electrons and is oxidized.
- Sulfur changes from an oxidation state of 0 to an oxidation state of -2 .
- Sulfur gains electrons and is reduced.

Redox Reactions

- Oxidation and reduction must occur simultaneously.
- If an atom loses electrons another atom must take them.
- The reactant that causes reduction in another reactant is called the reducing agent.
- The reducing agent contains the element that is oxidized.
- The reactant that causes oxidation in another reactant is called the oxidizing agent.
- The oxidizing agent contains the element that is reduced.

$$
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{Na}^{+} \mathrm{Cl}^{-}(s)
$$

Na is oxidized, while Cl is reduced.
Na is the reducing agent, and Cl_{2} is the oxidizing agent.

Combustion Reactions

- Combustion reactions are characterized by the reaction of a substance with O_{2} to form one or more oxygen-containing compounds, often including water. - Combustion reactions also emit heat.
- For example, as you saw earlier in this chapter, natural gas $\left(\mathrm{CH}_{4}\right)$ reacts with oxygen to form carbon dioxide and water:

$$
\begin{gathered}
\qquad \mathrm{CH}_{4}(g) \\
\text { Oxidation state: }-4+1
\end{gathered} \underset{0}{2 \mathrm{O}_{2}(g)} \rightarrow \underset{+4-2}{\mathrm{CO}_{2}(g)}+\underset{+1-2}{2 \mathrm{H}_{2} \mathrm{O}(g)}
$$

Combustion

- Ethanol, the alcohol in alcoholic beverages, also reacts with oxygen in a combustion reaction to form carbon dioxide and water.
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)$

