Writing Numbers in Scientific Notation

People have an average of 1×10^{5} hairs on their scalp. Each hair is about $8 \times 10^{-6} \mathrm{~m}$ wide.

[^0]
Scientific Notation

Scientific notation is used to write very large or very small numbers, such as

- the width of a human hair, 0.000008 m , which is also written as $8 \times 10^{-6} \mathrm{~m}$.
- the number of hairs on a human scalp, 100000 , which is also written as 1×10^{5} hairs.

Scientific Notation

Numbers written in scientific notation have two parts:

1.5×10^{2}
Coefficient
Power of 10

The coefficient is at least 1 but less than 10 .

Writing Numbers in Scientific Notation

The coefficient is obtained by moving the decimal point to give a number that is at least 1 but less than 10 .

Standard Number Scientific Notation

$$
\underbrace{2400}_{\leftarrow 3 \text { places }}=\underbrace{2.4}_{\text {Coefficient }} \times \underbrace{10^{3}}_{\begin{array}{c}
\text { Power } \\
\text { of } 10
\end{array}}
$$

Standard Number Scientific Notation

$$
\underbrace{0.00086}_{4 \text { places } \rightarrow}=\underbrace{8.6}_{\text {Coefficient }} \times \underset{\substack{\text { Power } \\ \text { of } 10}}{10^{-4}}
$$

Some Powers of 10

table 1.2 Some Powers of 10

Standard Number	Multiples of 10	Scientific Notation	
10000	$10 \times 10 \times 10 \times 10$	1×10^{4}	Some positive powers of 10
1000	$10 \times 10 \times 10$	1×10^{3}	
100	10×10	1×10^{2}	
10	10	1×10^{1}	
1	0	1×10^{0}	
0.1	$\frac{1}{10}$	1×10^{-1}	Some negative powers of 10
0.01	$\frac{1}{10} \times \frac{1}{10}=\frac{1}{100}$		
0.001	$\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}=\frac{1}{1000}$	1×10^{-3}	
0.0001	$\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10}=\frac{1}{10000}$	1×10^{-4}	

Some Measurements in Scientific Notation

table 1.3 Some Measurements Written as Standard Numbers and in Scientific Notation

Measured Quantity	Standard Number	Scientific Notation
Volume of gasoline used in the United States each year	550000000000 L	$5.5 \times 10^{11} \mathrm{~L}$
Diameter of Earth	12800000 m	$1.28 \times 10^{7} \mathrm{~m}$
Average volume of blood pumped in 1 day	8500 L	$8.5 \times 10^{3} \mathrm{~L}$
Time for light to travel from the Sun to Earth	500 s	$5 \times 10^{2} \mathrm{~s}$
Mass of a typical human	68 kg	$6.8 \times 10^{1} \mathrm{~kg}$
Mass of stirrup bone in ear	0.003 g	$3 \times 10^{-3} \mathrm{~g}$
Diameter of a chickenpox (Varicella zoster) virus	0.0000003 m	$3 \times 10^{-7} \mathrm{~m}$
Mass of bacterium (mycoplasma)	0.0000000000000000001 kg	$1 \times 10^{-19} \mathrm{~kg}$

Comparing Numbers in Standard and Scientific Notation

Standard Format Scientific Notation

Diameter of the Earth:
12800000 m
$1.28 \times 10^{7} \mathrm{~m}$

Mass of a human:

$$
68 \mathrm{~kg} \quad 6.8 \times 10^{1} \mathrm{~kg}
$$

Diameter of a chickenpox virus:
0.0000003 cm
$3 \times 10^{-7} \mathrm{~cm}$
A chickenpox virus.

Scientific Notation and Calculators

You can enter a number written in scientific notation on many calculators using the EE or EXP key.

Number to Enter	Procedure	Calculator Display	
4×10^{6}	4 EE or EXP 6	406 or $406 \quad$ or $4 E 06$	
2.5×10^{-4}	2.5 EE or EXP +1- 4	$2.5-04$ or 2.5^{-04} or $2.5 E-04$	

Scientific Notation and Calculators

When a calculator display appears in scientific notation, it is shown as a number between 1 and 10 , followed by a space and the power (exponent).

Calculator Display		Expressed in Scientific Notation
7.5204 or 7.52^{04} or $7.52 E 04$	7.52×10^{4}	
$5.8-02$ or 5.8^{-02} or $5.8 E-02$	5.8×10^{-2}	

Scientific Notation and Calculators

On many scientific calculators, a number is converted to scientific notation, using the appropriate keys.

$$
\begin{gathered}
0.00052 \underbrace{2^{\text {nd }} \text { or } 3^{\text {rd f function key }} \mathrm{SCI}}=5.2-04 \text { or } 5.2^{-04} \text { or } 5.2 \varepsilon-04=5.2 \times 10^{-4} \\
\text { Calculator display }
\end{gathered}
$$

Learning Check

Write each of the following in correct scientific notation:
A. 64000
B. 0.021

Solution

Write each of the following in correct scientific notation:
A. 64000

Step 1 Move the decimal point to obtain a coefficient that is at least 1 but less than 10 .

$$
6.4
$$

Step 2 Express the number of places moved as a power of 10 .

$$
10^{4}
$$

Step 3 Write the product of the coefficient multiplied by the power of 10 .

$$
6.4 \times 10^{4}
$$

Solution

Write each of the following in correct scientific notation:
B. 0.021

Step 1 Move the decimal point to obtain a coefficient that is at least 1 but less than 10 .
2.1

Step 2 Express the number of places moved as a power of 10 .

$$
10^{-2}
$$

Step 3 Write the product of the coefficient multiplied by the power of 10 .

$$
2.1 \times 10^{-2}
$$

Learning Check

Select the correct scientific notation for each.
A. 0.000008
(1) 8×10^{6}
(2) 8×10^{-6}
(3) 0.8×10^{-5}
B. 72000000
(1) 7.2×10^{7}
(2) 72×10^{6}
(3) 7.2×10^{-7}

Solution

Select the correct scientific notation for each.
A. 0.000008
(Move the decimal point 6 places to the right.)
(2) 8×10^{-6}
B. 72000000
(Move the decimal point 7 places to the left.)
(1) 7.2×10^{7}

Concept Map

[^0]: Learning Goal Write a number in scientific notation.

