Writing Numbers in Scientific Notation

Learning Goal Write a number in scientific notation.

Each hair is about 8 \times 10⁻⁶ m

wide.

Scientific Notation

Scientific notation is used to write very large or very small numbers, such as

- the width of a human hair, 0.000 008 m, which is also written as 8×10^{-6} m.
- the number of hairs on a human scalp, 100 000, which is also written as 1 × 10⁵ hairs.

Chemistry: An Introduction to General, Organic, and Biological Chemistry, Thirteenth Edition

KEY MATH SKILL

Scientific Notation

Writing Numbers in Scientific Notation

Numbers written in **scientific notation** have two parts:

 1.5×10^2 Coefficient Power of 10

The coefficient is at least 1 but less than 10.

Writing Numbers in Scientific Notation

The coefficient is obtained by moving the decimal point to give a number that is at least 1 but less than 10.

Some Powers of 10

TABLE 1.2 Some Powers of 10

Standard Number	Multiples of 10	Scientific Notation		
10 000	$10 \times 10 \times 10 \times 10$	1×10^{4}	Some positive	
1 000	$10 \times 10 \times 10$	1×10^{3}	powers of 10	
100	10×10	1×10^{2}		
10	10	1×10^{1}		
1	0	1×10^{0}		
0.1	$\frac{1}{10}$	1×10^{-1}	Some negative powers of 10	
0.01	$\frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$	1×10^{-2}		
0.001	$\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{1000}$	1×10^{-3}		
0.0001	$\frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} = \frac{1}{10000}$	1×10^{-4}		

Some Measurements in Scientific Notation

TABLE 1.3 Some Measurements Written as Standard Numbers and in Scientific Notation

Measured Quantity	Standard Number	Scientific Notation
Volume of gasoline used in the United States each year	550 000 000 000 L	$5.5 \times 10^{11} L$
Diameter of Earth	12 800 000 m	$1.28 \times 10^7 \text{m}$
Average volume of blood pumped in 1 day	8500 L	$8.5 imes 10^3 L$
Time for light to travel from the Sun to Earth	500 s	$5 imes 10^2 s$
Mass of a typical human	68 kg	$6.8 imes 10^1 \mathrm{kg}$
Mass of stirrup bone in ear	0.003 g	$3 imes 10^{-3}~{ m g}$
Diameter of a chickenpox (Varicella zoster) virus	0.000 000 3 m	$3 \times 10^{-7} \mathrm{m}$
Mass of bacterium (mycoplasma)	0.000 000 000 000 000 000 1 kg	$1 imes 10^{-19}\mathrm{kg}$

Comparing Numbers in Standard and Scientific Notation

Standard Format Scientific Notation

Diameter of the Earth: $12\ 800\ 000\ \text{m}$ $1.28\ \times\ 10^7\ \text{m}$

Mass of a human: 68 kg

 $6.8 \times 10^{1} \text{ kg}$

Diameter of a chickenpox virus: $0.000\ 000\ 3\ \text{cm}$ $3\ \times\ 10^{-7}\ \text{cm}$

A chickenpox virus.

Scientific Notation and Calculators

You can enter a number written in scientific notation on many calculators using the EE or EXP key.

Number to Enter	Procedure	Calculator Display		
4×10^{6}	4 [EE or EXP] 6	406 or 406	or or	4 <i>E</i> 06
2.5×10^{-4}	$2.5 \boxed{\text{EE or EXP}} + 1 4$	2.5-04 or 2.5	5 ⁻⁰⁴ or	2.5E-04

Scientific Notation and Calculators

When a calculator display appears in scientific notation, it is shown as a number between 1 and 10, followed by a space and the power (exponent).

Calculator Display			Expressed in Scientific Notation			
7.52 04	or	7.5204	or	7.52 <i>E</i> 04	7.52×10^{4}	
5.8-02	or	5.8 ⁻⁰²	or	5.8E-02	5.8×10^{-2}	

Scientific Notation and Calculators

On many scientific calculators, a number is converted to scientific notation, using the appropriate keys.

 $0.000 52 \underbrace{2^{nd} \text{ or } 3^{rd} \text{ function key}}_{\text{SCI}} = 5.2 - 04 \text{ or } 5.2^{-04} \text{ or } 5.2 - 04 = 5.2 \times 10^{-4}$ Calculator display

Learning Check

Write each of the following in correct scientific notation:

- **A.** 64 000
- **B.** 0.021

Solution

Write each of the following in correct scientific notation:

- **A.** 64 000
 - **Step 1** Move the decimal point to obtain a coefficient that is at least 1 but less than 10.

6.4

Step 2 Express the number of places moved as a power of 10.

10^{4}

Step 3 Write the product of the coefficient multiplied by the power of 10.

 6.4×10^4

Solution

Write each of the following in correct scientific notation:

- **B.** 0.021
 - **Step 1** Move the decimal point to obtain a coefficient that is at least 1 but less than 10.

2.1

Step 2 Express the number of places moved as a power of 10.

 10^{-2}

Step 3 Write the product of the coefficient multiplied by the power of 10.

 2.1×10^{-2}

Learning Check

Select the correct scientific notation for each.

- **A.** 0.000 008
- (1) 8 × 10⁶ (2) 8 × 10⁻⁶ (3) 0.8 × 10⁻⁵

B. 72 000 000 (1) 7.2 × 10⁷ (2) 72 × 10⁶ (3) 7.2 × 10⁻⁷

Select the correct scientific notation for each.

A. 0.000 008

(Move the decimal point 6 places to the right.)

(2) 8 × 10⁻⁶

B. 72 000 000
(Move the decimal point 7 places to the left.)
(1) 7.2 × 10⁷

Concept Map

