Name	Period
activation end	ergy webquest
Visit the sites below to complete the activities associately www.chem.vt.edu/RVGS/ACT/	iated with each.
Chemical reactions ordinarily occur as a result of	between reacting particles.
Doubling the concentration of CO , holding NO_2 constant.	ant, the number of collisions in a given time
Reactions occur as a direct result of	between molecules
It is possible to calculate the rate at which molecule:	s collide with each other by using the
In order for collisions to be effective, there must be slower moving molecules do not have enough collidethey bounce off one another and retain their Every reaction requires a certain minimum energy for, E_a, and is expressed in	to react when they to react when they to react when they the Kinetic Theory) the reaction to occurit is called
List the three properties of activation energy:	
1.	
2.	
3.	
an intermediate s must be formed before the reaction can occur.	species that is an unstable, high energy species that
display chemical kinetics in action. Two clear solut	classical chemical clock demonstration experiment to ions are mixed and at first there is no visible suddenly turns to a shade of dark blue. The iodine
http://www.chem.iastate.edu/group/Greenbowe/sections/g	projectfolder/flashfiles/kinetics2/iodine_clock.html

This is a simulation to help you understand the effects of several variables on the activation energy of a

reaction.

Directions:		

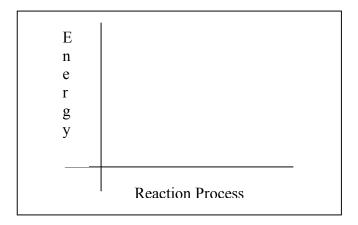
Keep all of the variables as they are when you get to the site. These conditions will be your "control".

Click on the Start button and wait as the reactants get mixed. Once the reactants have been poured into the beaker click the arrow (looks like the play button) on the timer. This will start the clock.

Let the timer play until the reaction is complete. The beaker of liquid will turn dark gray when the reaction is complete. Push pause once the reaction has completed in order to record the time.

"Control" Reaction time:	
Repeat the process above changing only temperature. Record the times for each	lly the temperature. Try a warmer temperature and a cooler ach below.
Warmer Temp:	Cooler Temp:
Time	Time
In one sentence or two, summarize the	e effect of temperature on the rate of a reaction.
Now, using what you learned about the temperature on the rate of a reaction	e <u>kinetic theory</u> on the first page, how would you explain the effect of n?
Return the temperature to 25 °C. Cho concentration of a solution you need to	ange the concentration of the reactants one at a time. To change the o also change the amount of water.
In this simulation you are also required that you have enough liquid to equal 10	d to keep the volume of the reactants constant. Check to make sure 00 mL.
Click on start and then the timer. Rec	cord the time.
Use 54 mL of H_2O and 6 mL KI. Time $^{\circ}$	the reaction took:
Use 63 mL of H_2O and 15 mL (NH ₄) ₂ S ₂	$_{2}O_{8}$. Time the reaction took:
In one or two sentences, summarize th	he effect of concentration on the rate of a reaction.

Scientific Process Review! Why did you only change one variable at a time? (For example, why wouldn't you change the concentration and the temperature at the same time?)


Before you visit the next site, read the questions below. The video starts right away, so you need to know what to listen for before it begins! BEFORE, you type in the website below, be sure the volume of your computer is on and loud enough that you can hear it. Otherwise, you will miss the introduction and won't be able to fill in the next time statements.

http://www.mhl	ne.com/physsci	/chemistry/essent	tialchemistry/flo	<u>ash/activa2.sw</u>	£
When molecules for the reaction		nust have a minimur	m amount of		
_		collision if the mo	olecules have les	s kinetic energ	y than the
Exothermic Red	action:				
Draw the profil	e of an exothe	rmic reaction on th	ne graph axes.		
	E n e r g y				
		Reaction Proce	ess		
	• •	n each other, there oon atom of the CC			force between one of
The bonds betw becomes	_	· -	m becomes		and the bond length
		form an species fo			
The activation of	energy is the _		amount of er	nergy needed f	or the reaction to proceed.
•		ween the carbon ar gen continues to _			, and the bond
D: The new bor	nd has now forr 	med and the bond l	between nitroge	n and oxygen h	as been
	than the er	tho nergy of the react e surroundings. Th	ants. This mean	is that energy (

reactions.

Endothermic Reaction:

Draw the profile of an endothermic reaction on the graph axes.

A: As the molecules approach	each other they are	to each other.	
The bonds between the chlorin between a chlorine atom and ni		and lengthen as a bond begins to form	
B: An activated complex forms before they form the product.		between the two molecul	es
C: The new bond will continue weakens and begins to break.	to	as the old bond between the chlorine ato	ms
•		stable than the reactants. This means that en These are characteristics of an	nergy