

John E. McMurry

www.cengage.com/chemistry/mcmurry

Chapter 1 Structure and Bonding

Learning Objectives

(1.1)

- Atomic structure: The nucleus
- (1.2)
- Atomic structure: Orbitals
- (1.3)
- Atomic structure: Electron configurations
 (1.4)
- Development of chemical bonding theory

Learning Objectives

(1.5)

- Describing chemical bonds: Valence bond theory
- (1.6)
- *sp*³ hybrid orbitals and the structure of methane
 (1.7)
- *sp*³ hybrid orbitals and the structure of ethane
 (1.8)
- sp² hybrid orbitals and the structure of ethylene

Learning Objectives

(1.9)

- sp hybrid orbitals and the structure of acetylene
 (1.10)
- Hybridization of nitrogen, oxygen, phosphorus, and sulfur
- (1.11)
- Describing chemical bonds: Molecular orbital theory
- (1.12)
- Drawing chemical structures

What is Organic Chemistry?

- Living things are made of organic chemicals
 - Proteins that make up hair
 - DNA
 - Foods and medicines

Cholesterol

Benzylpenicillin

Origins of Organic Chemistry

- Foundations date from mid-1700's
- Compounds obtained from plants and animals
 - Low-melting solids
 - Hard to isolate, purify, and work with
- Organic compounds were considered to have some vital force as they were from living sources
 - Thought that it could not be synthesized in laboratory

Origins of Organic Chemistry

- Soap H₃O⁺ "Fatty acids"
 1828, Wöhler showed that it was possible to convert inorganic salt ammonium cyanate into organic substance urea

Organic Chemistry

- Study of carbon compounds
- More than 50 million known chemical compounds contain carbon
- Carbon is a group 4A element
 - Can share 4 valence electrons and form 4 covalent bonds
 - Able to bond with one another to form long chains and rings
 - Only element that has the ability to form immense diversity of compounds

Figure 1.1 - The Position of Carbon in the Periodic Table

Atomic Structure - The Nucleus

- Positively charged
 - Surrounded by a cloud of negatively charged electrons (at a distance of 10⁻¹⁰ m)
- Consist of subatomic particles
 - Protons, positively charged
 - Neutrons, electrically neutral

Atomic Structure - The Nucleus

- Diameter of an atom is about 2 × 10⁻¹⁰ m
 - 200 picometers (pm) [the unit ångström (Å) is 10⁻¹⁰ m = 100 pm]

Atomic Number and Atomic Mass

- Atomic number (Z) Number of protons in an atom's nucleus
- Mass number (A) Number of protons plus neutrons
- Atoms of a given element have the same atomic number
- Isotopes: Atoms with the same atomic number but different mass numbers
- Atomic mass (atomic weight) Weighted average mass in atomic mass units (amu) of an element's naturally occurring isotopes

Atomic Structure - Orbitals

- Wave equation Mathematical equation which describes the behavior of a specific electron in an atom
 - Wave function, or orbital, is the solution of wave equation
 - Denoted by the Greek letter psi (Ψ)
- Plot of ψ^2 describes where an electron is most likely to be
- An electron cloud has no specific boundary
 - Most probable area is considered

Atomic Structure - Orbitals

- *s*, *p*, *d*, and *f* are different kinds of orbitals
- s and p orbitals are common in organic and biological chemistry
- s orbitals Spherical, nucleus at center
- p orbitals Dumbbell-shaped, nucleus at middle
- *d* orbitals Elongated dumbbell-shaped, nucleus at center

A *p* **orbital** © 2016 Cengage Learning. All Rights Reserved.

A d orbital

Atomic Structure - Orbitals

- Orbitals in an atom are organized into different electron shells
 - Centered around the nucleus in shells of increasing size and energy
- Different shells contain different numbers and kinds of orbitals
- Each orbital can be occupied by two electrons

Figure 1.4 - The Energy Levels of Electrons in an Atom

Energy

•	3rd shell (<i>capacity</i> —18 electrons)	3d 3p 3s	$\stackrel{\texttt{P}}{\longrightarrow}$		-↑↓-	-+↓-
	2nd shell (<i>capacity</i> —8 electrons)	2p 2s	↓			
	1st shell (<i>capacity</i> —2 electrons)	1 <i>s</i>				

- Each shell consists of three mutually perpendicular p orbitals
 - Denoted p_x , p_y , and p_z

P-Orbitals

- Node: Region of zero electron density
 - Separates two lobes of each p orbital

Atomic Structure: Electron Configurations

- Ground-state electron configuration: Listing of orbitals occupied by an atom's electrons
 - Called lowest-energy arrangement
- Rules
 - Lowest-energy orbitals fill first, in the order of 1s $\rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p \rightarrow 4s \rightarrow 3d$
 - Aufbau principle

Atomic Structure: Electron Configurations

- Electrons act as if they were spinning around an axis
 - Spin can have only two orientations, up (1) and down (1)
 - Only two electrons can occupy an orbital, and they must be of opposite spin
 - Pauli exclusion principle
- If two or more empty orbitals of equal energy are available, electrons occupy each with parallel spins until all orbitals have one electron
 - Hund's rule

- Give the ground-state electron configuration for sulfur
- Solution:
 - Atomic number of sulfur is 16
 - Number of electrons = 16

In a more concise way it can be written as

 $1s^2 2s^2 2p^6 3s^2 3p^4$

- How many electrons does magnesium have in its outermost electron shell?
- Solution:
 - Elements of the periodic table are organized into groups based on the number of outer-shell electrons each element has
 - Using the periodic table we locate the group of the element, magnesium
 - Magnesium Group 2A
 - Has two electrons in its outermost shell

- Kekulé and Couper independently observed that carbon is tetravalent
- Jacobus Van't Hoff and Le Bel proposed that the four bonds of carbon have specific spatial directions
 - Atoms surround carbon at corners of a regular tetrahedron

Figure 1.6 - A Representation of a Tetrahedral Carbon Atom

A tetrahedral carbon atom

- Atoms form bonds because the resulting compound is more stable than the separate atoms
- Valence shell: Atom's outermost shell
 - Impart special stability to the noble gas elements
- Ionic bonds Ions held together by a electrostatic attraction
 - Formed as a result of electron transfers
- **Covalent bond**: Formed by sharing of electrons
 - Organic compounds have covalent bonds from sharing electrons

- Molecule: Neutral collection of atoms held together by covalent bonds
- Electron-dot structures: Represents valence shell electrons of an atom as dots
 - Called Lewis structures
- Line-bond structures: Indicates two-electron covalent bond as a line drawn between atoms
 - Called Kekulé structures

- Number of covalent bonds an atom forms depends on the number of additional valence electrons it needs to reach a stable octet
- Carbon has four valence electrons (2s² 2p²), forming four bonds
- Nitrogen has five valence electrons (2s² 2p³), forming three bonds

Non-Bonding Electrons

- Lone pair Valence electrons not used in bonding
- Example
 - Nitrogen atom in ammonia (NH₃)
 - Shares six valence electrons in three covalent bonds
 - Two valence electrons are nonbonding lone pair

- Draw a molecule of chloroform, CHCl₃, using solid, wedged, and dashed lines to show its tetrahedral geometry
- Solution:

Valence Bond Theory

- Covalent bond forms when two atoms approach each other closely so that a singly occupied orbital on one atom overlaps a singly occupied orbital on the other atom
 - H–H bond results from the overlap of two singly occupied hydrogen 1s orbitals
 - H–H bond is cylindrically symmetrical, sigma (σ)
 bond

Valence Bond Theory

- Reaction 2 H• \rightarrow H₂ releases 436 kJ/mol
- H–H has a bond strength of 436 kJ/mol (1 kJ = 0.2390 kcal; 1 kcal = 4.184 kJ)

Valence Bond Theory

- Bond length: Ideal distance between nuclei that leads to maximum stability
 - If too close, they repel
 - If too far apart, bonding is weak

*sp*³ Orbitals and the Structure of Methane

- Carbon has 4 valence electrons (2s² 2p²)
- In CH₄, all C–H bonds are identical (tetrahedral)
- sp³ hybrid orbitals: s orbital and three p orbitals combine to form four equivalent, unsymmetrical, tetrahedrally oriented orbitals

*sp*³ Orbitals and the Structure of Methane

- sp³ orbitals in a C atom overlap with 1s orbitals of an H atom to form four identical C–H bonds
- Each C–H bond has a strength of 439 kJ/mol and a length of 109 pm
- Bond angle: Formed between two adjacent bonds

*sp*³ Orbitals and the Structure of Ethane

- Two C's bond to each other by σ overlap of an sp³ orbital from each
- Three sp³ orbitals on each C overlap with H 1s orbitals to form six C–H bonds
 - C–H bond strength in ethane is 421 kJ/mol
 - C–C bond is 154 pm long and strength is 377 kJ/mol
- Bond angles of ethane are tetrahedral

Some representations of ethane

Figure 1.12 - The Structure of Ethane

*sp*³ carbon

*sp*³ carbon

 $sp^3-sp^3 \sigma$ bond

Ethane

- Draw a line-bond structure for propane, CH₃CH₂CH₃
 - Predict the value of each bond angle, and indicate the overall shape of the molecule
- Solution:

- Geometry Tetrahedral
- Bond angles 109° (approximately)

*sp*² Orbitals and the Structure of Ethylene

- sp² hybrid orbitals: Derived by combination of an s atomic orbital with two p atomic orbitals
- sp² orbitals are in a plane with an angle of 120° from each other
- Remaining p orbital is perpendicular to the plane

*sp*² Orbitals and the Structure of Ethylene

- Two sp² hybridized orbitals overlap to form a σ bond
- *p* orbitals interact by sideways overlap to form a
 pi (π) bond
- sp²-sp² σ bond and 2p-2p π bond result in sharing four electrons and formation of C-C double bond
- Electrons in the σ bond are centered between nuclei
- Electrons in the π bond occupy regions on either side of a line between nuclei

Structure of Ethylene

- H atoms form s bonds with four sp² orbitals
- H–C–H and H–C–C form bond angles of about 120°
- C–C double bond in ethylene is shorter and stronger than single bond in ethane

© 2016 Cengage Learning. All Rights Reserved.

- Draw electron-dot and line-bond structures of formaldehyde
 - Indicate the hybridization of the carbon orbitals
- Solution:
 - Two hydrogens, one carbon, and one oxygen can combine in one way

The orbitals are sp²-hybridized

sp Orbitals and the Structure of Acetylene

- Carbon can form a triple bond sharing six electrons
- Carbon 2s orbital hybridizes with a single p orbital giving two sp hybrids
 - Two p orbitals remain unchanged
- sp orbitals are linear, 180° apart on x-axis
- Two p orbitals are perpendicular on the y-axis and the z-axis

Figure 1.15 - sp Hybridization

Orbitals of Acetylene

- Two sp hybrid orbitals from each C form sp-sp σ bond
- *p*_z orbitals from each C form a *p*_z-*p*_z π bond by sideways overlap
 - p_y orbitals overlap to form $p_y p_y \pi$ bond

Carbon-carbon triple bond

Bonding in Acetylene

- Sharing of six electrons forms C≡C
- Two sp orbitals form σ bonds with hydrogens
- Shortest and strongest carbon–carbon bond

Table 1.2 - Comparison of C–C and C–H Bondsin Methane, Ethane, Ethylene, and Acetylene

		Bond	Bond	
Molecule	Bond	(kJ/mol)	(kcal/mol)	(pm)
Methane, CH ₄	(sp^3) C — H	439	105	109
Ethane, CH ₃ CH ₃	(<i>sp</i> ³) C — C (<i>sp</i> ³)	377	90	154
	(<i>sp</i> ³) C — H	421	101	109
Ethylene, $H_2C = CH_2$	$(sp^2) C = C (sp^2)$	728	174	134
	$(sp^2) C - H$	464	111	109
Acetylene, HC≡CH	$(sp) C \equiv C (sp)$	965	231	120
	(sp) C - H	558	133	106

- Draw a line-bond structure for propyne, CH₃C≡CH
 - Indicate the hybridization of the orbitals on each carbon
 - Predict a value for each bond angle
- Solution:

$$H_{J3}^{H} \xrightarrow{sp}_{2} \xrightarrow{sp}_{1}^{Sp} \xrightarrow{sp}_{1}^{Sp}$$

- C3-H bonds are σ bonds
 - Overlap of an sp³ orbital of carbon
 - 3 with s orbital of hydrogen
- C1-H bond is a σ bond
 - Overlap of an sp orbital of carbon
 - 1 with an *s* orbital of hydrogen
- C2-C3 bond is a σ bond
 - Overlap of an sp orbital of carbon
 - 2 with an sp³ orbital of carbon 3
- Three C1-C2 bonds

- Bond angle
 - Between three carbon atoms is 180°
 - H–C1≡C2 is 180°
 - Between hydrogen and the sp³-hybridized carbon is 109°

- H–N–H bond angle in methylamine 107.1°
- C–N–H bond angle is 110.3°
- N's orbitals hybridize to form four *sp*³ orbitals
- One sp³ orbital is occupied by two nonbonding electrons, and three sp³ orbitals have one electron each

Methylamine

- Oxygen atom in methanol can be described as sp³-hybridized
- C–O–H bond angle in methanol is 108.5
- Two sp³ hybrid orbitals on oxygen are occupied by nonbonding electron lone pairs

- Methyl phosphate, CH₃OPO₃²⁻
- O–P–O bond angle is approximately 110° to 112°
 - Implies sp³ hybridization in the phosphorus orbitals

- Dimethyl sulfide [(CH₃)₂S] is the simplest example of a sulfide
- Described by approximate sp³ hybridization around sulfur
- Have significant deviation from the tetrahedral angle

- Identify all nonbonding lone pairs of electrons in the oxygen atom in dimethyl ether, CH₃–O–CH₃
 - What is its expected geometry
- Solution:

The sp³-hybridized oxygen atom has tetrahedral geometry

Molecular Orbital (MO) Theory

- Description of covalent bond formation as resulting from a mathematical combination of atomic orbitals to form molecular orbitals
- Bonding MO: Molecular orbital that is lower in energy than the atomic orbitals from which it is formed
- Antibonding MO: Molecular orbital that is higher in energy than the atomic orbitals from which it is formed

Figure 1.17 - Molecular Orbitals of H₂

Molecular Orbital Theory

- The π bonding MO is from combining p orbital lobes with the same algebraic sign
- The π antibonding MO is from combining lobes with opposite signs
- Only bonding MO is occupied

Drawing Chemical Structures

- Several shorthand methods have been developed to write structures
- Condensed structures: C-H or C-C single bonds are not shown, they are understood
- Example

2-Methylbutane

Rules for Drawing Skeletal Structures

- Carbon atoms aren't usually shown
- Carbon atom is assumed to be at each intersection of two lines (bonds) and at the end of each line
- Hydrogen atoms bonded to carbon aren't shown
- Atoms other than carbon and hydrogen are shown

Table 1.3 - Kekulé and SkeletalStructures for Some Compounds

- How many hydrogens are bonded to each carbon in the following compound
 - Give the molecular formula of each substance

Solution:

- Organic chemistry Study of carbon compounds
- Atom: Charged nucleus containing positively charged protons and neutrally charged neutrons surrounded by negatively charged electrons
- Electronic structure of an atom is described by wave equation
 - Different orbitals have different energy levels and different shapes
 - s orbitals are spherical, p orbitals are dumbbellshaped

- Covalent bonds Electron pair is shared between atoms
- Valence bond theory Electron sharing occurs by the overlapping of two atomic orbitals
- Molecular orbital (MO) theory Bonds result from combination of atomic orbitals to give molecular orbitals, which belong to the entire molecule

- Sigma (σ) bonds Circular cross-section and are formed by head-on interaction
- Pi (π) bonds Formed by sideways interaction of p orbitals
- Carbon uses hybrid orbitals to form bonds in organic molecules
 - In single bonds with tetrahedral geometry, carbon has four sp³ hybrid orbitals
 - In double bonds with planar geometry, carbon uses three equivalent sp² hybrid orbitals and one unhybridized p orbital

- Carbon uses two equivalent *sp* hybrid orbitals to form a triple bond with linear geometry, with two unhybridized p orbitals
- Atoms such as nitrogen and oxygen hybridize to form strong, oriented bonds
 - Nitrogen atom in ammonia and the oxygen atom in water are sp³-hybridized
- Structures in which carbon–carbon and carbon–hydrogen bonds aren't shown are called condensed structures