John E. McMurry

Chapter 1
 Structure and Bonding

Learning Objectives

(1.1)

- Atomic structure: The nucleus
(1.2)
- Atomic structure: Orbitals
(1.3)
- Atomic structure: Electron configurations
(1.4)
- Development of chemical bonding theory

Learning Objectives

(1.5)

- Describing chemical bonds: Valence bond theory
(1.6)
- $s p^{3}$ hybrid orbitals and the structure of methane
(1.7)
- $s p^{3}$ hybrid orbitals and the structure of ethane (1.8)
- $s p^{2}$ hybrid orbitals and the structure of ethylene

Learning Objectives

(1.9)

- $s p$ hybrid orbitals and the structure of acetylene (1.10)
- Hybridization of nitrogen, oxygen, phosphorus, and sulfur
(1.11)
- Describing chemical bonds: Molecular orbital theory
(1.12)
- Drawing chemical structures

What is Organic Chemistry?

- Living things are made of organic chemicals
- Proteins that make up hair
- DNA
- Foods and medicines

Atorvastatin
(Lipitor)

Oxycodone (OxyContin)

Cholesterol

Benzylpenicillin

Origins of Organic Chemistry

- Foundations date from mid-1700's
- Compounds obtained from plants and animals
- Low-melting solids
- Hard to isolate, purify, and work with
- Organic compounds were considered to have some vital force as they were from living sources
- Thought that it could not be synthesized in laboratory

Origins of Organic Chemistry

- 1816, Chevreul found that soap can be separated into several organic compounds which he termed fatty acids

Animal fat $\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{NaOH}}$ Soap + Glycerin

$$
\text { Soap } \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \text {"Fatty acids" }
$$

- 1828, Wöhler showed that it was possible to convert inorganic salt ammonium cyanate into organic substance urea

$$
\mathrm{NH}_{4}^{+}{ }^{+} \mathrm{OCN} \xrightarrow{\text { Heat }}
$$

Ammonium cyanate
Urea

Organic Chemistry

- Study of carbon compounds
- More than 50 million known chemical compounds contain carbon
- Carbon is a group 4A element
- Can share 4 valence electrons and form 4 covalent bonds
- Able to bond with one another to form long chains and rings
- Only element that has the ability to form immense diversity of compounds

- The Position of

Carbon in the Periodic Table

Grou 1A																	8A
H	2A											3A	4A	5A	6A	7A	He
Li	Be											B	C	N	0	F	Ne
Na	Mg											Al	Si	P	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															

Atomic Structure - The Nucleus

- Positively charged
- Surrounded by a cloud of negatively charged electrons (at a distance of $10^{-10} \mathrm{~m}$)
- Consist of subatomic particles
- Protons, positively charged
- Neutrons, electrically neutral

Atomic Structure - The Nucleus

- Diameter of an atom is about $2 \times 10^{-10} \mathrm{~m}$
- 200 picometers (pm) [the unit ångström (\AA) is $10^{-10} \mathrm{~m}=100 \mathrm{pm}$]

Atomic Number and Atomic

 Mass- Atomic number (Z) - Number of protons in an atom's nucleus
- Mass number (A) - Number of protons plus neutrons
- Atoms of a given element have the same atomic number
- Isotopes: Atoms with the same atomic number but different mass numbers
- Atomic mass (atomic weight) - Weighted average mass in atomic mass units (amu) of an element's naturally occurring isotopes

Atomic Structure - Orbitals

- Wave equation - Mathematical equation which describes the behavior of a specific electron in an atom
- Wave function, or orbital, is the solution of wave equation
- Denoted by the Greek letter psi (Ψ)
- Plot of ψ^{2} describes where an electron is most likely to be
- An electron cloud has no specific boundary
- Most probable area is considered

Atomic Structure - Orbitals

- s, p, d, and f are different kinds of orbitals
- s and p orbitals are common in organic and biological chemistry
- s orbitals - Spherical, nucleus at center
- p orbitals - Dumbbell-shaped, nucleus at middle
- d orbitals - Elongated dumbbell-shaped, nucleus at center
- Orbitals in an atom are organized into different electron shells
- Centered around the nucleus in shells of increasing size and energy
- Different shells contain different numbers and kinds of orbitals
- Each orbital can be occupied by two electrons

- The Energy Levels

 of Electrons in an Atom| 3rd shell | $3 d$ | $\uparrow \downarrow$ |
| :---: | :---: | :---: |
| (capacity-18 electrons) | $3 p$ | $\uparrow \downarrow$ |
| | $3 s$ | $\uparrow \downarrow$ |
| 2nd shell | $2 p$ | $\uparrow \downarrow$ |
| (capacity-8 electrons) | $2 s$ | $\uparrow \downarrow$ |
| | | |
| 1st shell | | |
| (capacity-2 electrons) | $1 s$ | $\uparrow \downarrow$ |

P-Orbitals

- Each shell consists of three mutually perpendicular p orbitals
- Denoted p_{x}, p_{y}, and p_{z}
- Node: Region of zero electron density
- Separates two lobes of each p orbital

A $2 p_{\mathrm{x}}$ orbital

A $2 p_{\mathrm{y}}$ orbital

A $\mathbf{2} p_{z}$ orbital

Atomic Structure: Electron

Configurations

- Ground-state electron configuration: Listing of orbitals occupied by an atom's electrons
- Called lowest-energy arrangement
- Rules
- Lowest-energy orbitals fill first, in the order of $1 s$
$\rightarrow 2 s \rightarrow 2 p \rightarrow 3 s \rightarrow 3 p \rightarrow 4 s \rightarrow 3 d$
- Aufbau principle

Atomic Structure: Electron Configurations

- Electrons act as if they were spinning around an axis
- Spin can have only two orientations, up (\uparrow) and down (\downarrow)
- Only two electrons can occupy an orbital, and they must be of opposite spin
- Pauli exclusion principle
- If two or more empty orbitals of equal energy are available, electrons occupy each with parallel spins until all orbitals have one electron
- Hund's rule

Worked Example

- Give the ground-state electron configuration for sulfur
- Solution:
- Atomic number of sulfur is 16
- Number of electrons = 16

$$
\begin{aligned}
& 3 p \frac{1+}{4 t} \uparrow \uparrow \\
& 3 s \text { it }
\end{aligned} \begin{aligned}
& \text { In a more concise way it can } \\
& \text { be written as } \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}
\end{aligned}
$$

Worked Example

- How many electrons does magnesium have in its outermost electron shell?
- Solution:
- Elements of the periodic table are organized into groups based on the number of outer-shell electrons each element has
- Using the periodic table we locate the group of the element, magnesium
- Magnesium - Group 2A
- Has two electrons in its outermost shell

Development of Chemical Bonding Theory

- Kekulé and Couper independently observed that carbon is tetravalent
- Jacobus Van't Hoff and Le Bel proposed that the four bonds of carbon have specific spatial directions
- Atoms surround carbon at corners of a regular tetrahedron

A regular tetrahedron

A tetrahedral carbon atom

Development of Chemical Bonding Theory

- Atoms form bonds because the resulting compound is more stable than the separate atoms
- Valence shell: Atom's outermost shell
- Impart special stability to the noble gas elements
- Ionic bonds - Ions held together by a electrostatic attraction
- Formed as a result of electron transfers
- Covalent bond: Formed by sharing of electrons
- Organic compounds have covalent bonds from sharing electrons

Development of Chemical Bonding Theory

- Molecule: Neutral collection of atoms held together by covalent bonds
- Electron-dot structures: Represents valence shell electrons of an atom as dots
- Called Lewis structures
- Line-bond structures: Indicates two-electron covalent bond as a line drawn between atoms
- Called Kekulé structures

Development of Chemical Bonding Theory

Electron-dot structures (Lewis structures)

Methane
$\left(\mathrm{CH}_{4}\right)$

Ammonia $\left(\mathrm{NH}_{3}\right)$

Water
$\left(\mathrm{H}_{2} \mathrm{O}\right)$

Methanol ($\mathrm{CH}_{3} \mathrm{OH}$)

Development of Chemical Bonding Theory

- Number of covalent bonds an atom forms depends on the number of additional valence electrons it needs to reach a stable octet
- Carbon has four valence electrons ($2 s^{2} 2 p^{2}$), forming four bonds
- Nitrogen has five valence electrons $\left(2 s^{2} 2 p^{3}\right)$, forming three bonds

\qquad
One bond

Four bonds Three bonds
\qquad
Two bonds

Non-Bonding Electrons

- Lone pair - Valence electrons not used in bonding
- Example
- Nitrogen atom in ammonia $\left(\mathrm{NH}_{3}\right)$
- Shares six valence electrons in three covalent bonds
- Two valence electrons are nonbonding lone pair

Nonbonding,
lone-pair electrons

Ammonia

Worked Example

- Draw a molecule of chloroform, CHCl_{3}, using solid, wedged, and dashed lines to show its tetrahedral geometry
- Solution:

Valence Bond Theory

- Covalent bond forms when two atoms approach each other closely so that a singly occupied orbital on one atom overlaps a singly occupied orbital on the other atom
- H-H bond results from the overlap of two singly occupied hydrogen 1s orbitals
- H-H bond is cylindrically symmetrical, sigma (σ) bond

Valence Bond Theory

- Reaction $2 \mathrm{H} \cdot \rightarrow \mathrm{H}_{2}$ releases $436 \mathrm{~kJ} / \mathrm{mol}$
- H-H has a bond strength of $436 \mathrm{~kJ} / \mathrm{mol}$ $(1 \mathrm{~kJ}=0.2390 \mathrm{kcal} ; 1 \mathrm{kcal}=4.184 \mathrm{~kJ})$

$$
2 \mathrm{H} \cdot \longrightarrow \mathrm{H}_{2}
$$

Two hydrogen atoms $\uparrow \downarrow$

Valence Bond Theory

- Bond length: Ideal distance between nuclei that leads to maximum stability
- If too close, they repel
- If too far apart, bonding is weak

Internuclear distance \longrightarrow

$s p^{3}$ Orbitals and the Structure of Methane

- Carbon has 4 valence electrons $\left(2 s^{2} 2 p^{2}\right)$
- In CH_{4}, all $\mathrm{C}-\mathrm{H}$ bonds are identical (tetrahedral)
- $s p^{3}$ hybrid orbitals: s orbital and three p orbitals combine to form four equivalent, unsymmetrical, tetrahedrally oriented orbitals

$s p^{3}$ Orbitals and the Structure of Methane

- $s p^{3}$ orbitals in a C atom overlap with $1 s$ orbitals of an H atom to form four identical $\mathrm{C}-\mathrm{H}$ bonds
- Each C-H bond has a strength of $439 \mathrm{~kJ} / \mathrm{mol}$ and a length of 109 pm
- Bond angle: Formed between two adjacent bonds

$s p^{3}$ Orbitals and the Structure of Ethane

- Two C's bond to each other by σ overlap of an $s p^{3}$ orbital from each
- Three $s p^{3}$ orbitals on each C overlap with H $1 s$ orbitals to form six $\mathrm{C}-\mathrm{H}$ bonds
- C-H bond strength in ethane is $421 \mathrm{~kJ} / \mathrm{mol}$
- C-C bond is 154 pm long and strength is 377 kJ/mol
- Bond angles of ethane are tetrahedral

$\mathrm{CH}_{3} \mathrm{CH}_{3}$

Some representations of ethane

- The Structure

of Ethane

Worked Example

- Draw a line-bond structure for propane, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
- Predict the value of each bond angle, and indicate the overall shape of the molecule
- Solution:

- Geometry - Tetrahedral
- Bond angles - 109° (approximately)

$s p^{2}$ Orbitals and the Structure of Ethylene

- $s p^{2}$ hybrid orbitals: Derived by combination of an s atomic orbital with two p atomic orbitals
- $s p^{2}$ orbitals are in a plane with an angle of 120° from each other
- Remaining p orbital is perpendicular to the plane

Side view

Top view

$s p^{2}$ Orbitals and the Structure of Ethylene

- Two $s p^{2}$ hybridized orbitals overlap to form a σ bond
- p orbitals interact by sideways overlap to form a pi (π) bond
- $s p^{2}-s p^{2} \sigma$ bond and $2 p-2 p \pi$ bond result in sharing four electrons and formation of $\mathrm{C}-\mathrm{C}$ double bond
- Electrons in the σ bond are centered between nuclei
- Electrons in the π bond occupy regions on either side of a line between nuclei

Structure of Ethylene

- H atoms form s bonds with four $s p^{2}$ orbitals
- $\mathrm{H}-\mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}-\mathrm{C}$ form bond angles of about 120°
- C-C double bond in ethylene is shorter and stronger than single bond in ethane

$$
s p^{2} \text { carbon }
$$

Carbon-carbon double bond

Worked Example

- Draw electron-dot and line-bond structures of formaldehyde
- Indicate the hybridization of the carbon orbitals
- Solution:
- Two hydrogens, one carbon, and one oxygen can combine in one way

Electron-dot structure

Line-bond structure

- The orbitals are $s p^{2}$-hybridized

$s p$ Orbitals and the Structure of Acetylene

- Carbon can form a triple bond sharing six electrons
- Carbon 2s orbital hybridizes with a single p orbital giving two sp hybrids
- Two p orbitals remain unchanged
- sp orbitals are linear, 180° apart on x-axis
- Two p orbitals are perpendicular on the y-axis and the z-axis

One $s p$ hybrid Another $s p$ hybrid

Orbitals of Acetylene

- Two sp hybrid orbitals from each C form $s p-s p \sigma$ bond
- p_{z} orbitals from each C form a $p_{z}-p_{z} \pi$ bond by sideways overlap
- p_{y} orbitals overlap to form $p_{\mathrm{y}}-p_{\mathrm{y}} \pi$ bond

Carbon-carbon triple bond

Bonding in Acetylene

- Sharing of six electrons forms $\mathrm{C} \equiv \mathrm{C}$
- Two sp orbitals form σ bonds with hydrogens
- Shortest and strongest carbon-carbon bond

- Comparison of C-C and C-H Bonds

 in Methane, Ethane, Ethylene, and Acetylene| Molecule | Bond | Bond strength | | Bond
 length |
| :--- | :--- | :---: | :---: | :---: |
| $(\mathbf{p m})$ | $(\mathbf{k c a l} / \mathbf{m o l})$ | ($\mathbf{m})$ | | |
| Methane, CH_{4} | $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ | 439 | 105 | 109 |
| Ethane, $\mathrm{CH}_{3} \mathrm{CH}_{3}$ | $\left(s p^{3}\right) \mathrm{C}-\mathrm{C}\left(s p^{3}\right)$ | 377 | 90 | 154 |
| | $\left(s p^{3}\right) \mathrm{C}-\mathrm{H}$ | 421 | 101 | 109 |
| Ethylene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ | $\left(s p^{2}\right) \mathrm{C}=\mathrm{C}\left(s p^{2}\right)$ | 728 | 174 | 134 |
| | $\left(s p^{2}\right) \mathrm{C}-\mathrm{H}$ | 464 | 111 | 109 |
| Acetylene, $\mathrm{HC} \equiv \mathrm{CH}$ | $(s p) \mathrm{C} \equiv \mathrm{C}(s p)$ | 965 | 231 | 120 |
| | $(s p) \mathrm{C}-\mathrm{H}$ | 558 | 133 | 106 |

Worked Example

- Draw a line-bond structure for propyne, $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$
- Indicate the hybridization of the orbitals on each carbon
- Predict a value for each bond angle
- Solution:

Worked Example

- C3-H bonds are σ bonds
- Overlap of an $s p^{3}$ orbital of carbon
- 3 with s orbital of hydrogen
- $\mathrm{C} 1-\mathrm{H}$ bond is a σ bond
- Overlap of an $s p$ orbital of carbon
- 1 with an s orbital of hydrogen
- C2-C3 bond is a σ bond
- Overlap of an $s p$ orbital of carbon
- 2 with an $s p^{3}$ orbital of carbon 3
- Three C1-C2 bonds

Worked Example

- Bond angle
- Between three carbon atoms is 180°
- $\mathrm{H}-\mathrm{C} 1 \equiv \mathrm{C} 2$ is 180°
- Between hydrogen and the $s p^{3}$-hybridized carbon is 109°

Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur

- $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in methylamine 107.1°
- $\mathrm{C}-\mathrm{N}-\mathrm{H}$ bond angle is 110.3°
- N's orbitals hybridize to form four $s p^{3}$ orbitals
- One $s p^{3}$ orbital is occupied by two nonbonding electrons, and three $s p^{3}$ orbitals have one electron each

Methylamine

Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur

- Oxygen atom in methanol can be described as $s p^{3}$-hybridized
- C-O-H bond angle in methanol is 108.5
- Two $s p^{3}$ hybrid orbitals on oxygen are occupied by nonbonding electron lone pairs

Methanol (methyl alcohol)

Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur

- Methyl phosphate, $\mathrm{CH}_{3} \mathrm{OPO}_{3}{ }^{2-}$
- O-P-O bond angle is approximately 110° to 112°
- Implies $s p^{3}$ hybridization in the phosphorus orbitals

> Methyl phosphate
> (an organophosphate)

Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur

- Dimethyl sulfide $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}\right]$ is the simplest example of a sulfide
- Described by approximate $s p^{3}$ hybridization around sulfur
- Have significant deviation from the tetrahedral angle

Dimethyl sulfide

Worked Example

- Identify all nonbonding lone pairs of electrons in the oxygen atom in dimethyl ether, $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
- What is its expected geometry
- Solution:

- The $s p^{3}$-hybridized oxygen atom has tetrahedral geometry

Molecular Orbital (MO) Theory

- Description of covalent bond formation as resulting from a mathematical combination of atomic orbitals to form molecular orbitals
- Bonding MO: Molecular orbital that is lower in energy than the atomic orbitals from which it is formed
- Antibonding MO: Molecular orbital that is higher in energy than the atomic orbitals from which it is formed

- Molecular Orbitals

of H_{2}

Molecular Orbital Theory

- The π bonding MO is from combining p orbital lobes with the same algebraic sign
- The π antibonding MO is from combining lobes with opposite signs
- Only bonding MO is occupied

Drawing Chemical Structures

- Several shorthand methods have been developed to write structures
- Condensed structures: C-H or C-C single bonds are not shown, they are understood
- Example

Rules for Drawing Skeletal Structures

- Carbon atoms aren't usually shown
- Carbon atom is assumed to be at each intersection of two lines (bonds) and at the end of each line
- Hydrogen atoms bonded to carbon aren't shown
- Atoms other than carbon and hydrogen are shown

- Kekulé and Skeletal

 Structures for Some Compounds

 Structures for Some Compounds}

Compound

Kekulé structure

Skeletal structure

Isoprene, $\mathrm{C}_{5} \mathrm{H}_{8}$

Methylcyclohexane, $\mathrm{C}_{7} \mathrm{H}_{14}$

Phenol, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$

Worked Example

- How many hydrogens are bonded to each carbon in the following compound
- Give the molecular formula of each substance

Estrone (a hormone)

Worked Example

- Solution:

Estrone $-\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}$

- Organic chemistry - Study of carbon compounds
- Atom: Charged nucleus containing positively charged protons and neutrally charged neutrons surrounded by negatively charged electrons
- Electronic structure of an atom is described by wave equation
- Different orbitals have different energy levels and different shapes
- s orbitals are spherical, p orbitals are dumbbellshaped
- Covalent bonds - Electron pair is shared between atoms
- Valence bond theory - Electron sharing occurs by the overlapping of two atomic orbitals
- Molecular orbital (MO) theory - Bonds result from combination of atomic orbitals to give molecular orbitals, which belong to the entire molecule

Summary

- Sigma (б) bonds - Circular cross-section and are formed by head-on interaction
- $\mathrm{Pi}(\pi)$ bonds - Formed by sideways interaction of p orbitals
- Carbon uses hybrid orbitals to form bonds in organic molecules
- In single bonds with tetrahedral geometry, carbon has four $s p^{3}$ hybrid orbitals
- In double bonds with planar geometry, carbon uses three equivalent $s p^{2}$ hybrid orbitals and one unhybridized p orbital

Summary

- Carbon uses two equivalent $s p$ hybrid orbitals to form a triple bond with linear geometry, with two unhybridized p orbitals
- Atoms such as nitrogen and oxygen hybridize to form strong, oriented bonds
- Nitrogen atom in ammonia and the oxygen atom in water are $s p^{3}$-hybridized
- Structures in which carbon-carbon and carbon-hydrogen bonds aren't shown are called condensed structures

