

John E. McMurry

www.cengage.com/chemistry/mcmurry

Chapter 2 Polar Covalent Bonds; Acids and Bases

© 2016 Cengage Learning. All Rights Reserved.

Learning Objectives

(2.1)

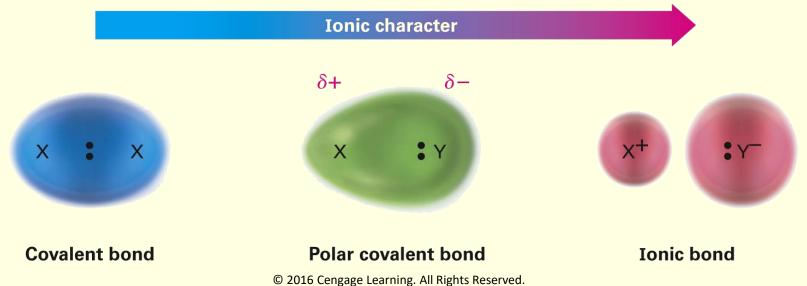
- Polar covalent bonds: Electronegativity
 (2.2)
- Polar covalent bonds: Dipole moments (2.3)
- Formal charges
- (2.4)
- Resonance
- (2.5)
- Rules for resonance forms

Learning Objectives

(2.6)

- Drawing resonance forms
- (2.7)
- Acids and bases: The Brønsted–Lowry definition
 (2.8)
- Acid and base strength
- (2.9)
- Predicting acid—base reactions from pKa values
 (2.10)
- Organic acids and organic bases

Learning Objectives


(2.11)

- Acids and bases: The Lewis definition
 (2.12)
- Noncovalent interactions between molecules

Polar Covalent Bonds: Electronegativity

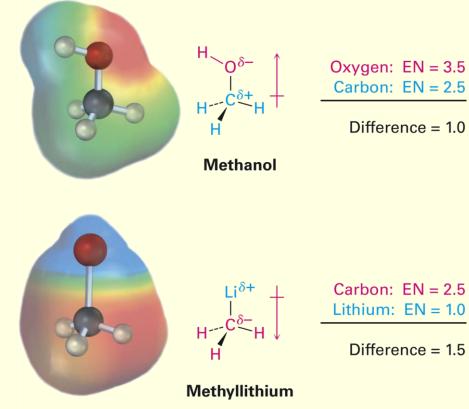
- Covalent bonds can have ionic character
- Polar covalent bonds: Bonding electrons are attracted more strongly by one atom than by the other
 - Electron distribution between atoms is not symmetrical

Electronegativity

- Intrinsic ability of an atom to attract the shared electrons in a covalent bond
- Differences in EN produce bond polarity
- F is most electronegative (EN = 4.0), Cs is least (EN = 0.7)
- Metals on left side of periodic table attract electrons weakly
- Halogens and other reactive nonmetals on right side of periodic table attract electrons strongly
- EN of C = 2.5

Figure 2.2 - Electronegativity Values and Trends

H 2.1														He			
Li 1.0	Be 1.6											В 2.0	C 2.5	N 3.0	0 3.5	F 4.0	Ne
Na 0.9	Mg 1.2											AI 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	Ar
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Тс 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe
Cs 0.7	Ba 0.9	La 1.0	Hf 1.3	Та 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI 1.8	Pb 1.9	Bi 1.9	Po 2.0	At 2.1	Rn


Bond Polarity and Inductive Effect

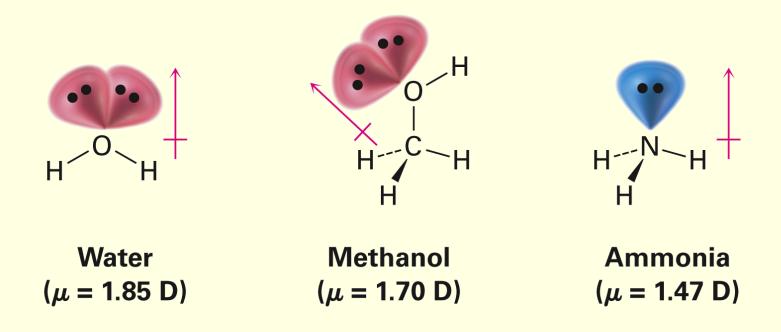
- Difference in EN of atoms < 2 in polar covalent bonds
- Difference in EN > 2 in ionic bonds
 - C–H bonds are relatively nonpolar
 - C–O, C–X bonds are polar
- Bonding electrons toward electronegative atom
 - C acquires partial positive charge, δ +
 - Electronegative atom acquires partial negative charge, δ -
- Inductive effect: Shifting of electrons in a σ bond in response to EN of nearby atoms

Electrostatic Potential Maps

- Show calculated charge distributions
- Colors indicate electron-rich (red) and electron-poor (blue) regions
- Arrows indicate direction of bond polarity

- Which element in each of the following pairs is more electronegative?
 - (a) Li or H
 - (b) CI or I
- Solution:
 - Using Figure 2.2
 - (a) Li (1.0) is less electronegative when compared to H (2.1)
 - (b) CI (3.0) is more electronegative when compared to I (2.5)

Polar Covalent Bonds: Dipole Moments

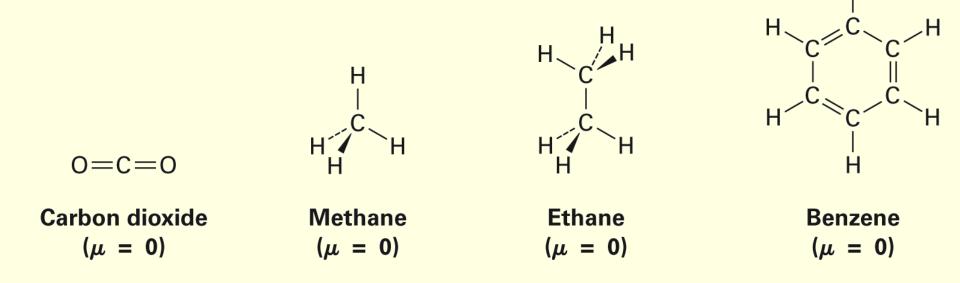


- Molecules are often polar from vector summation of individual bond polarities and lone-pair contributions
- Strongly polar substances are soluble in polar solvents like water
 - Nonpolar substances are insoluble in water
- Dipole moment (µ): Net molecular polarity, due to difference in summed charges
 - µ Magnitude of charge Q at end of molecular dipole times distance r between charges

Polar Covalent Bonds: Dipole Moments

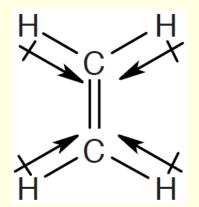
- $\mu = Q \times r$, in debyes (D), 1 D = 3.336 × 10⁻³⁰ coulomb meter
- Length of an average covalent bond, the dipole moment would be 1.60 × 10⁻²⁹ C⋅m, or 4.80 D

Dipole Moments in Water and Ammonia



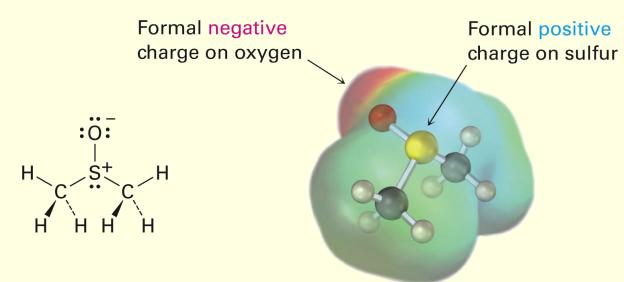
- Large dipole moments
 - EN of O and N > H
 - Both O and N have lone-pair electrons oriented away from all nuclei

TABLE 2-1 Dipole Moments of Some Compounds									
Compound	Dipole moment (D)	Compound	Dipole moment (D)						
NaCl	9.00	NH ₃	1.47						
CH ₂ O	2.33	CH ₃ NH ₂	1.31						
CH ₃ CI	1.87	CO ₂	0						
H ₂ O	1.85	CH ₄	0						
CH₃OH	1.70	CH ₃ CH ₃	0						
CH ₃ CO ₂ H	1.70		0						
CH ₃ SH	1.52								
		Benzene							


Absence of Dipole Moments

- In symmetrical molecules, the dipole moments of each bond have one in the opposite direction
 - The effects of the local dipoles cancel each other

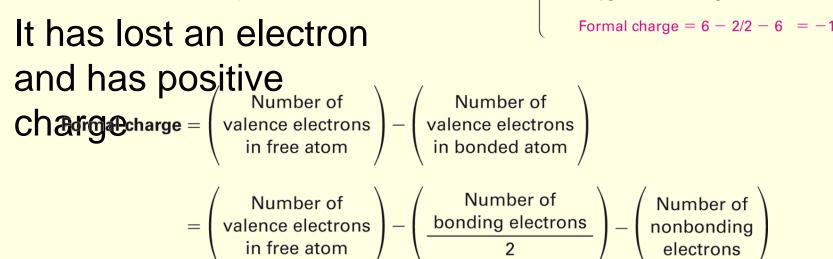
- Draw three-dimensional drawing of H₂C=CH₂ molecules
 - Predict whether it has dipole moment
- Solution:
 - Drawing an arrow that points from the least electronegative element to the most electronegative element

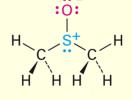


Has zero dipole moment

Formal Charges

- At times it is necessary to have structures with formal charges on individual atoms
- Bonding of the atom in the molecule is compared to valence electron structure




Dimethyl sulfoxide

© 2016 Cengage Learning. All Rights Reserved.

Formal Charge for Dimethyl Sulfoxide

- Atomic sulfur has 6 valence electrons
- Dimethyl sulfoxide sulfur has only 5

For sulfur:

Sulfur valence electrons	= 6
Sulfur bonding electrons	= 6
Sulfur nonbonding electrons	= 2

Formal charge = 6 - 6/2 - 2 = +1

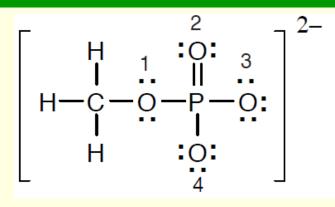
For oxygen:

Dxygen	valence electrons	=	6
Dxygen	bonding electrons	=	2
Dxygen	nonbonding electrons	=	6

Table 2.2 - A Summary ofCommon Formal Charges

Atom		С		N	I.	C)	S	;	Р
Structure	—ċ—	ċ	—ē—	—N	— <u>.</u>	—ö—	— <u>ö:</u>	— <u>;</u> + 	— <u>:</u> :-	P
Valence electrons	4	4	4	5	5	6	6	6	6	5
Number of bonds	3	3	3	4	2	3	1	3	1	4
Number of nonbonding electrons	1	0	2	0	4	2	6	2	6	0
Formal charge	0	+1	-1	+1	-1	+1	-1	+1	-1	+1

© 2016 Cengage Learning. All Rights Reserved.


 Calculate formal charges on the four O atoms in the methyl phosphate dianion

$$\begin{bmatrix} H & :0: \\ I & I \\ H-C-O-P-O: \\ I & I \\ H & :O: \\ H & :O: \end{bmatrix}^{2-2}$$

Solution:

Formal charge (FC) =
$$\begin{bmatrix} \# \text{ of valence} \\ \text{electrons} \end{bmatrix} - \begin{bmatrix} \# \text{ of bonding electrons} \\ 2 \end{bmatrix} - \begin{bmatrix} \# \text{ of } \\ nonbonding \end{bmatrix} = \begin{bmatrix} \# \text{ of } \\ nonbonding \end{bmatrix}$$

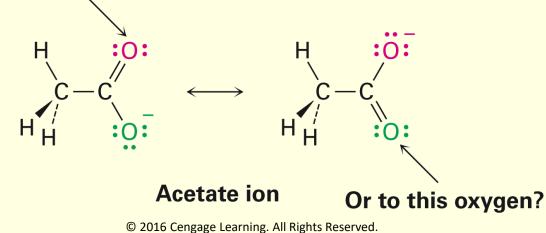
Methyl phosphate

• For oxygen 1: FC =
$$6 - \frac{4}{2} - 4 = 0$$

• For oxygen 2: FC = 6 -
$$\frac{4}{2}$$
 - 4 = 0

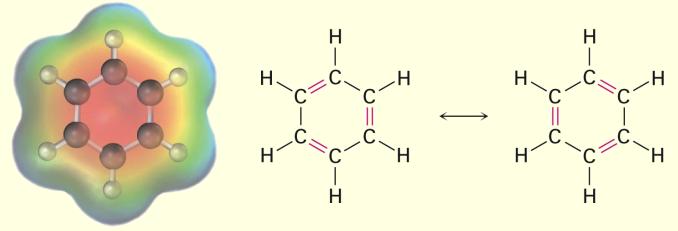
• For oxygen 3: FC =
$$6 - \frac{2}{2} - 6 = -1$$

• For oxygen 4: FC =
$$6 - \frac{2}{2} - 6 = -1$$


- Formal charge of oxygen atoms 1 and 2 is 0
- Formal charge of oxygen atoms 3 and 4 is -1

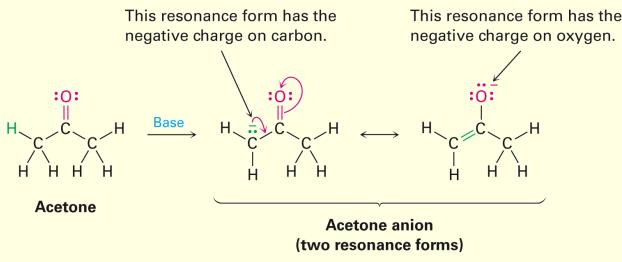
Resonance

- Some molecules have structures that cannot be shown with a single representation
- Represented by structures that contribute to the final structure but differ in the position of the π bond or lone pair
 - Such structures are delocalized and are represented by resonance forms


Double bond to this oxygen?

Resonance Hybrids

- Structure with resonance forms, that does not alternate between the forms
- Example Benzene (C₆H₆) has two resonance forms with alternating double and single bonds
 - Is a hybrid of the two individual forms
 - All six carbon—carbon bonds are equivalent

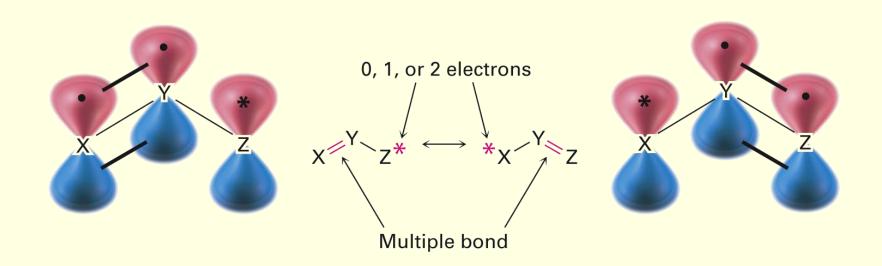

Benzene (two resonance forms)

© 2016 Cengage Learning. All Rights Reserved.

Rules for Resonance Forms

- Individual resonance forms are imaginary
 - Real structure is a hybrid of different forms
- Resonance forms differ only in the placement of their π or nonbonding electrons
 - Curved arrow indicates movement of electrons, not of the atoms

© 2016 Cengage Learning. All Rights Reserved.

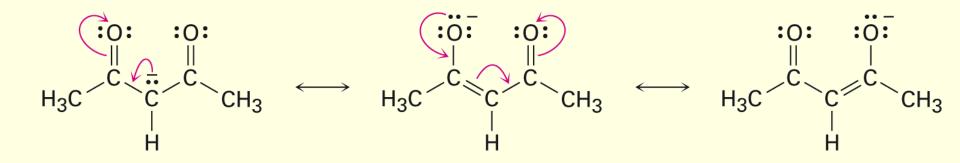

Rules for Resonance Forms

- Different resonance forms of a substance do not have to be equivalent
 - When two resonance forms are nonequivalent, the actual structure of the resonance hybrid resembles the more stable form
- Resonance forms obey normal rules of valency
- Resonance hybrid is more stable than any individual resonance form
 - Resonance leads to stability

Drawing Resonance Forms

- Any three-atom grouping with a p orbital on each atom has two resonance forms

Drawing Resonance Forms



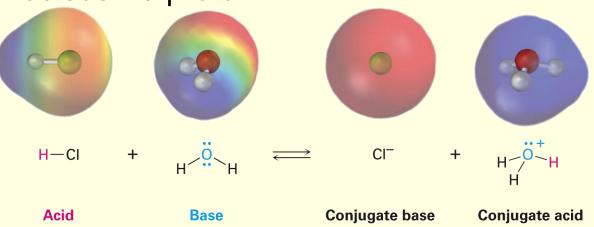
- Resonance forms differ by an exchange in position of the multiple bonds and the asterisk
 - From one end of the three-atom grouping to the other
- Recognizing three-atom groupings within larger structures help generate resonance forms, symmetrically

2,4-Pentanedione Anion

- Has a lone pair of electrons
- Has a formal negative charge on the central carbon atom, next to a C=O bond on the left and on the right
- Has three resonance structures

- Draw the indicated number of resonance forms for:
 - The allyl cation, $H_2C=CH CH_2^{2-}$ (2)
- Solution:
 - Locating three-atom groupings that contain a multiple bond next to an atom with a p orbital
 - Exchanging the positions of the bond and the electrons in the p orbital, we have:

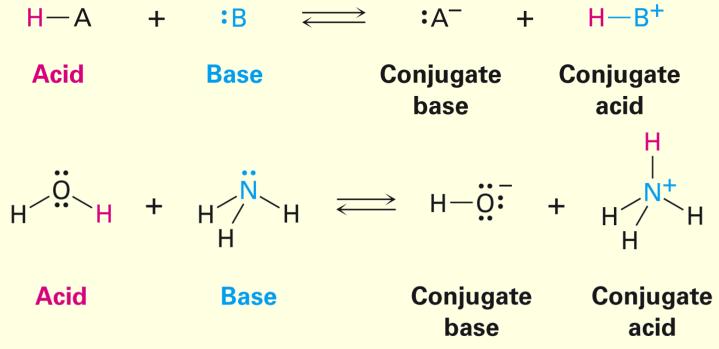
Acids and Bases: The Brønsted-Lowry Definition



- Idea that acids are solutions containing a lot of "H⁺" and bases are solutions containing a lot of "OH⁻" is not very useful in organic chemistry
- Brønsted-Lowry theory defines acids and bases by their role in reactions that transfer protons (H⁺) between donors and acceptors

Acids and Bases: The Brønsted-Lowry Definition

- Brønsted-Lowry acid: Substance that donates a hydrogen ion, H⁺
- Brønsted-Lowry base: Substance that accepts a hydrogen ion, H⁺
 - Proton is a synonym for H⁺
 - Loss of valence electron from H leaves only the nucleus—a proton



© 2016 Cengage Learning. All Rights Reserved.

Acids and Bases: The Brønsted-Lowry Definition

- Conjugate base: Product that results from deprotonation of a Brønsted-Lowry acid
- Conjugate acid: Product that results from protonation of a Brønsted-Lowry base

© 2016 Cengage Learning. All Rights Reserved.

Acid Base Strength

- Acidity constant (K_a): Measure of acid strength
 - For the reaction of an acid (HA) with water to form hydronium ion
- Conjugate base (A⁻) is a measure related to the strength of the acid
- Brackets [] indicate concentration in moles per liter

$$\mathbf{K}_{\mathbf{a}} = \frac{\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]\left[\mathbf{A}^{-}\right]}{\left[\mathbf{H}\mathbf{A}\right]}$$

Acid and Base Strength

- Acid strengths are normally expressed using pK_a values
 - $\mathbf{p}K_{a}$: Negative common logarithm of the K_{a}

$$\mathbf{pK}_{a} = -\log \mathbf{K}_{a}$$

- Stronger acids have smaller pK_a
- Weaker acids have larger pK_a

Acid and Base Strength

• Water is both an acid and base solvent $H_2O + H_2O \square OH^- + H_3O^+$

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[OH^{-}\right]}{\left[HA\right]} = \frac{\left[H_{3}O^{+}\right]\left[OH^{-}\right]}{\left[H_{2}O\right]}$$
$$K_{a} = \frac{\left[1.0 \times 10^{-7}\right]\left[1.0 \times 10^{-7}\right]}{55.4} = 1.8 \times 10^{-15}$$

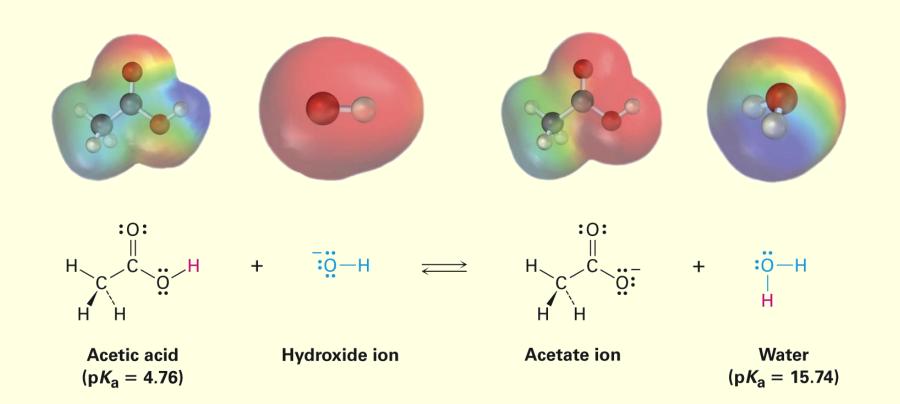
 $pK_a = 15.74$

- Ion product of water, $K_w = [H_3O^+][OH^-]$
- Molar concentration of pure water, $[H_2O] = 55.4 \text{ M at } 25^{\circ} \text{ C}$

Table 2.3 - Relative Strengths of Some Common Acids and Their Conjugate Bases

	Acid	Name	pK _a	Conjugate base	Name		
Weaker acid	CH₃CH₂OH	Ethanol	16.00	CH ₃ CH ₂ O ⁻	Ethoxide ion	Stronger base	
	H ₂ O	Water	15.74	HO-	Hydroxide ion		
	HCN	Hydrocyanic acid	9.31	CN-	Cyanide ion		
	H ₂ PO ₄	Dihydrogen phosphate ion	7.21	HPO4 ²⁻	Hydrogen phosphate ion		
	CH₃CO₂H	Acetic acid	4.76	$CH_3CO_2^-$	Acetate ion		
	H ₃ PO ₄	Phosphoric acid	2.16	H ₂ PO ₄ ⁻	Dihydrogen phosphate ion		
	HNO ₃	Nitric acid	-1.3	NO ₃ -	Nitrate ion		
Stronger acid	HCI	Hydrochloric acid	-7.0	CI-	Chloride ion	Weaker base	

- The amino acid phenylalanine has $pK_a = 1.83$, and tryptophan has $pK_a = 2.83$
 - Which is the stronger acid?
- Solution:
 - Stronger acid has a smaller pK_a and a weaker acid has a larger pK_a
 - Accordingly, phenylalanine (p $K_a = 1.83$) is a stronger acid than tryptophan (p $K_a = 2.83$)


Predicting Acid-Base Reactions from pK_a Values

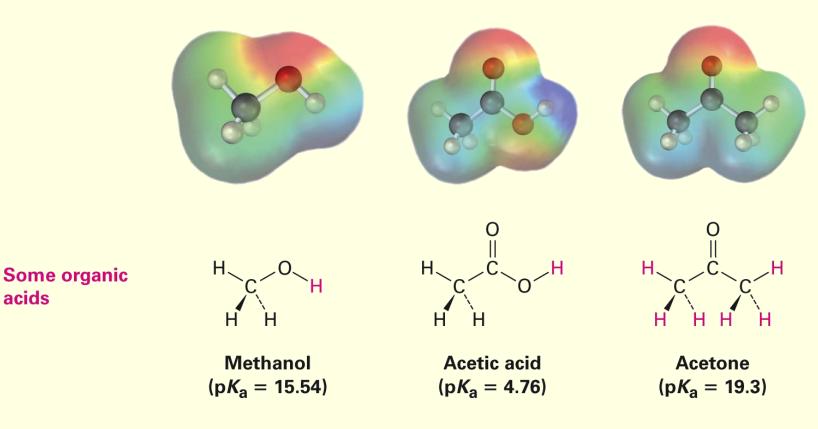
- pK_a values are related as logarithms to equilibrium constants
- Useful for predicting whether a given acid-base reaction will take place
- Difference in two pK_a values is the log of the ratio of equilibrium constants, and can be used to calculate the extent of transfer

Predicting Acid-Base Reactions from pK_a Values

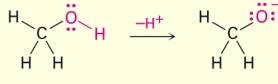
© 2016 Cengage Learning. All Rights Reserved.

- Will the following reaction take place to a significant extent as written, according to the data in Table 2.3?
- $HCN + CH_3CO_2^-Na^+ \xrightarrow{?} Na^+^-CN + CH_3CO_2H$
- Solution:
 - $HCN + CH_3CO_2^-Na^+ \xrightarrow{?} Na^+^-CN + CH_3CO_2H$

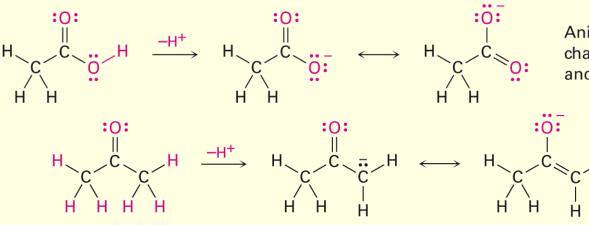
 $\begin{array}{ll} \mathsf{pK}_{\mathsf{a}} = \ 9.3 & \qquad \mathsf{pK}_{\mathsf{a}} = \ 4.7 & \\ \text{Weaker acid} & \qquad & \text{Stronger acid} \end{array}$


 Since CH₃CO₂H is stronger than HCN the reaction will not take place to a significant extent the direction written

© 2016 Cengage Learning. All Rights Reserved.


Characterized by the presence of positively polarized hydrogen atom

Organic Acids

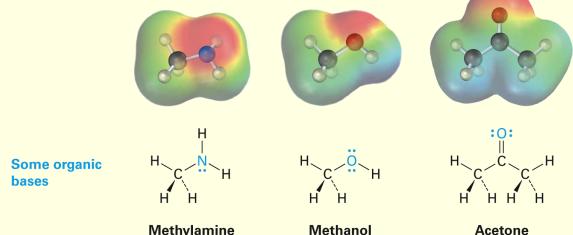


- Two main kinds, those that contain:
 - Hydrogen atom bonded to a electronegative oxygen atom(O–H)
 - A hydrogen atom bonded to a carbon atom next to a C=O bond(O=C-C-H)

Anion is stabilized by having negative charge on a highly electronegative atom.

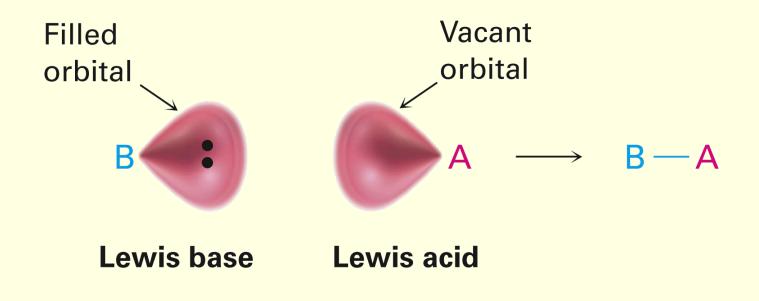
© 2016 Cengage Learning. All Rights Reserved.

Anion is stabilized both by having negative charge on a highly electronegative atom and by resonance.

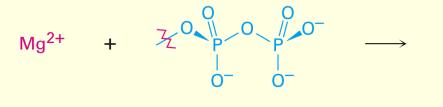

> Anion is stabilized both by resonance and by having negative charge on a highly electronegative atom.

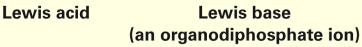
Organic Bases

- Have an atom with a lone pair of electrons that can bond to H⁺
- Nitrogen-containing compounds derived from ammonia are the most common organic bases
- Oxygen-containing compounds can react as bases with a strong acid or as acids with strong bases


© 2016 Cengage Learning. All Rights Reserved.

Acids and Bases: The Lewis Definition

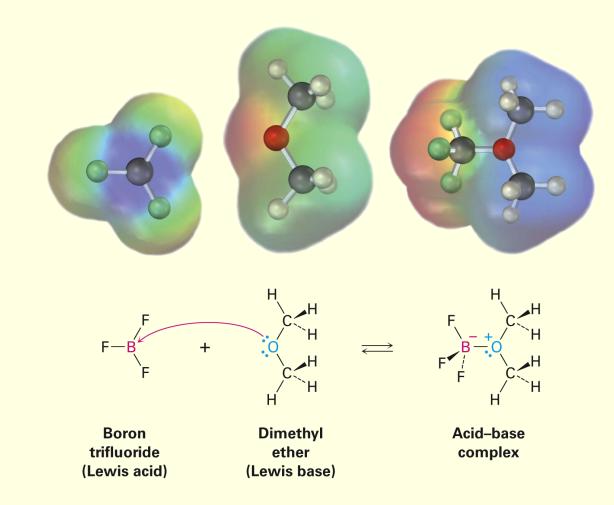

- Lewis acid: Electron pair acceptors
- Lewis bases: Electron pair donors
- Brønsted acids are not Lewis acids because they cannot accept an electron pair directly


Lewis Acids and the Curved Arrow Formalism

- Lewis definition of acidity includes metal cations, such as Mg²⁺
 - They accept a pair of electrons when they form a bond to a base

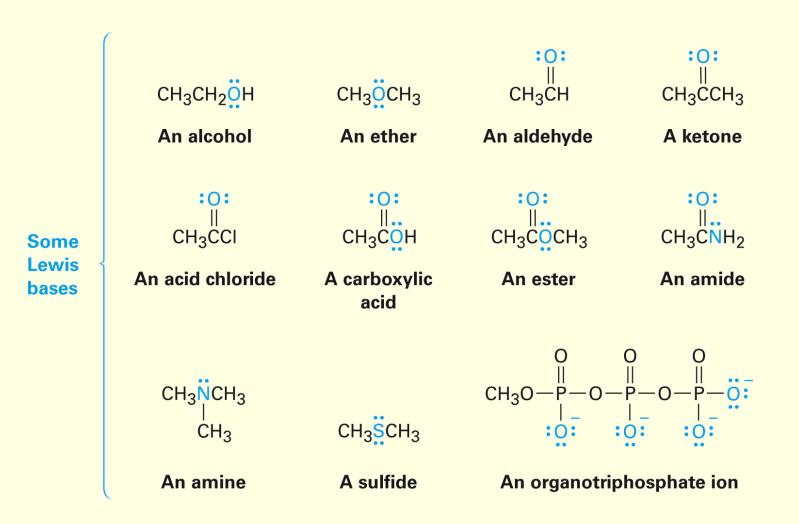
Acid-base complex

- Group 3A elements, such as BF₃ and AlCl₃, are Lewis acids
 - Have unfilled valence orbitals and can accept electron pairs from Lewis bases

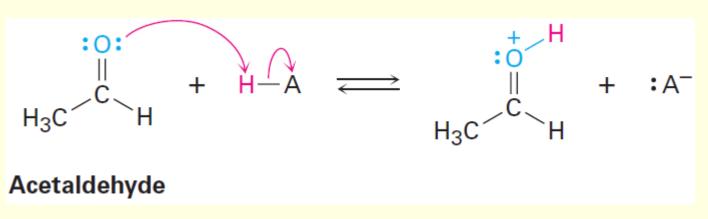

Lewis Acids and the Curved Arrow Formalism

- Transition-metal compounds, such as TiCl₄, FeCl₃, ZnCl₂, and SnCl₄, are Lewis acids
- Curved arrow means that a pair of electrons move from the atom at the tail of the arrow to the atom at the head of the arrow

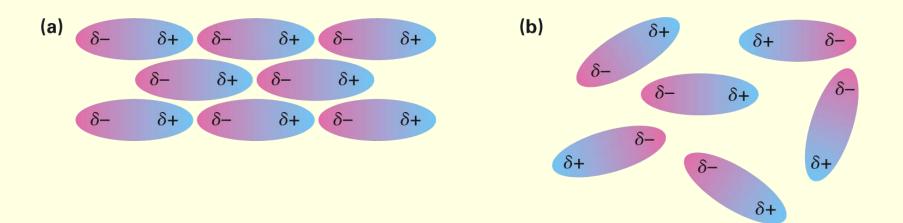
Figure 2.5 - The Reaction of Boron Trifluoride with Dimethyl Ether


Lewis Bases

- Compound with a pair of nonbonding electrons that it can use to bond to a Lewis acid
- Can accept protons as well as Lewis acids
 - Definition encompasses that for Brønsted bases
- Oxygen-and nitrogen-containing organic compounds are Lewis bases; they have lone pairs of electrons
- Some compounds can act as both acids and bases

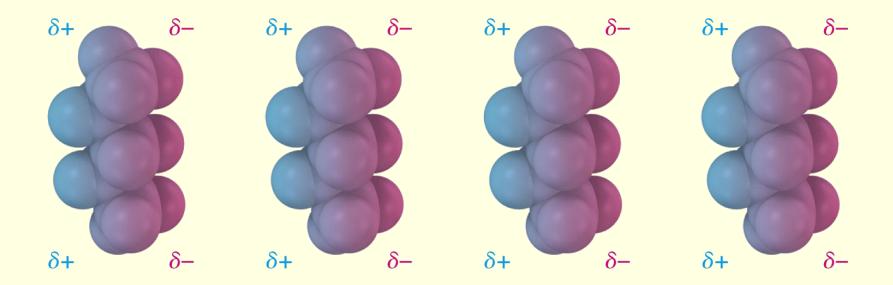

Lewis Bases

- Using curved arrows, show how acetaldehyde, CH₃CHO, can act as a Lewis base
- Solution:
 - A Lewis base donates an electron pair to a Lewis acid
 - Using a curved arrow to show the movement of a pair toward the H atom of the acid

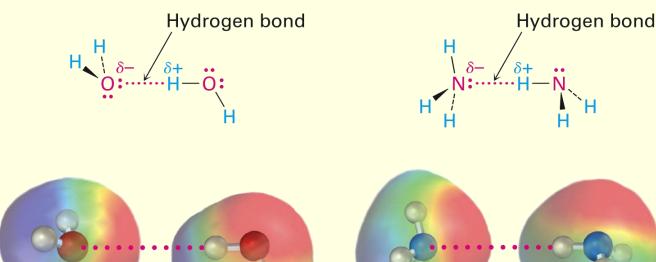

Noncovalent Interactions Between Molecules

- Noncovalent interactions: One of a variety of nonbonding interactions between molecules
 - Dipole–dipole forces
 - Dispersion forces
 - Hydrogen bonds

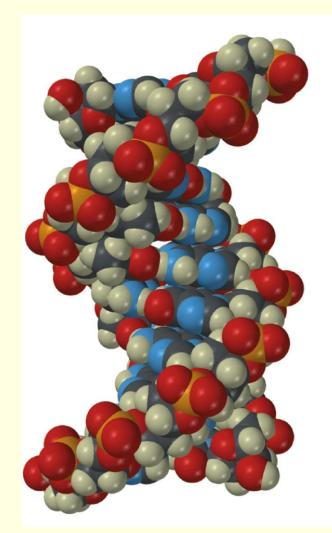
Dipole–Dipole Forces

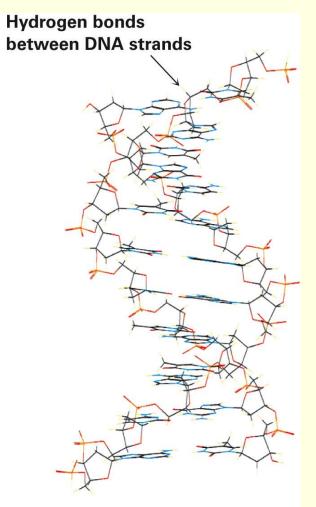

- Occur between polar molecules as a result of electrostatic interactions among dipoles
- Depending on orientation of the molecules, the forces can be either attractive or repulsive

Dispersion Forces

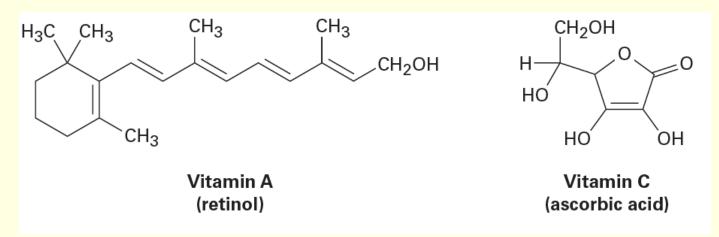


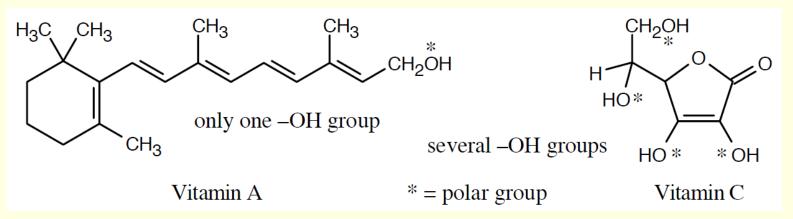
- Occur between all neighboring molecules
 - Arise due to constant change in electron distribution within molecules


Hydrogen Bond Forces


- Forces are the result of attractive interaction between a hydrogen bonded to an electronegative O or N atom and an unshared electron pair on another O or N atom

A Deoxyribonucleic Acid Segment





- Of the two vitamins A and C, one is hydrophilic and water-soluble while the other is hydrophobic and fat-soluble
 - Which is which?

Solution:

- Vitamin C has several polar —OH groups that can form hydrogen bonds with water
 - It is water soluble(hydrophilic)
- Most of Vitamin A's atoms can't form hydrogen bonds with water
 - It is fat-soluble(hydrophobic)

Summary

- Organic molecules often have polar covalent bonds as a result of unsymmetrical electron sharing caused by differences in the electronegativity of atoms
- Polarity of a molecule is measured by its dipole moment, μ
- (+) and (-) indicate formal charges on atoms in molecules to keep track of valence electrons around an atom

Summary

- Some substances must be shown as a resonance hybrid of two or more resonance forms that differ by the location of electrons
- A Brønsted(–Lowry) acid donates a proton
- A Brønsted(–Lowry) base accepts a proton
- Strength of Brønsted acid is related to the negative logarithm of the acidity constant, pK_a
- Weaker acids have higher values of pK_a

Summary

- Lewis acid has an empty orbital that can accept an electron pair
- Lewis base can donate an unshared electron pair
- Noncovalent interactions have several types Dipole–dipole, dispersion, and hydrogen bond forces