Perhaps someone has tried to trick you with this question: "Which is heavier, a pound of lead or a pound of feathers?" Many people would instinctively answer "lead." When they give this incorrect answer, these people are really thinking of density. If a piece of lead and a feather of the same volume are weighed, the lead would have a greater mass than the feather. It would take a much larger volume of feathers to equal the mass of a given volume of lead.

Density is the relationship of the mass of an object to its volume. Density is usually reported in units of grams per cubic centimeter $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$. For example, water has a density of $1.00 \mathrm{~g} / \mathrm{cm}^{3}$. Since a cubic centimeter contains the same volume as a milliliter, in some cases you may see density expressed as $\mathrm{g} / \mathrm{mL} . \quad$ Density $=\frac{\text { mass }}{\text { volume }}$ or $\mathrm{D}=\frac{\mathrm{M}}{\mathrm{V}}$

To solve density problems, list the known and unknown values, then use one of the following.

- When a problem requires you to calculate density, use the density equation, $D=\frac{M}{V}$
- You can solve for mass by multiplying both sides of the density equation by volume.

$$
\mathrm{D} \mathrm{~V}=\frac{\mathrm{M} Y}{\not X} \quad \text { or } \quad \mathrm{M}=\mathrm{D} \mathrm{~V}
$$

- You can solve for volume by dividing both sides of the equation above by density.

$$
\frac{\mathrm{M}}{\mathrm{D}}=\frac{\not \supset \mathrm{V}}{\not \supset} \quad \text { or } \quad \mathrm{V}=\frac{\mathrm{M}}{\mathrm{D}}
$$

Example: What is the mass of an object that has a density of $8 \mathrm{~g} / \mathrm{cm}^{3}$ and a volume of $64 \mathrm{~cm}^{3}$?
Known:

$$
\begin{aligned}
& \mathrm{D}=8 \mathrm{~g} / \mathrm{cm}^{3} \\
& \mathrm{~V}=64 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\text { Unknown: } \quad \mathrm{M}=?
$$

$$
\text { Equation to use: } \quad \mathrm{M}=\mathrm{D} V
$$

$$
\text { "Plug and chug": } \quad M=\left(8 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(64 \mathrm{~cm}^{3}\right)=512 \mathrm{~g}
$$

PROBLEMS List the known and unknown values; try to derive the equation without looking above.

1. A piece of tin has a mass of 16.52 g and a volume of $2.26 \mathrm{~cm}^{3}$. What is the density of tin?

Known:
Unknown:
2. A man has a $50.0 \mathrm{~cm}^{3}$ bottle completely filled with 163 g of a slimy green liquid. What is the density of the liquid?

Known:
Unknown:
3. A sealed $2500 \mathrm{~cm}^{3}$ flask is full to capacity with 0.36 g of a substance. Determine the density of the substance. Guess if the substance is a gas, a liquid, or a solid.
Known:
Unknown:
4. Different kinds of wood have different densities. The density of oak wood is generally $0.7 \mathrm{~g} / \mathrm{cm}^{3}$. If a $35 \mathrm{~cm}^{3}$ piece of wood has a mass of 25 g , is the wood likely to be oak?
Known:
Unknown:
5. The density of pine is generally about $0.5 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of a $800 \mathrm{~cm}^{3}$ piece of pine?

Known:
Unknown:
6. What is the volume of 325 g of metal with a density of $9.0 \mathrm{~g} / \mathrm{cm}^{3}$?

Known:
Unknown:
7. Diamonds have a density of $3.5 \mathrm{~g} / \mathrm{cm}^{3}$. How big is a diamond that has a mass of 0.10 g ?

Known:
Unknown:
8. What mass of water in grams will fill a tank 100 cm long, 50 cm wide, and 30 cm high?

Known:
Unknown:
9. A graduated cylinder is filled with water to a level of 40.0 mL . When a piece of copper is lowered into the cylinder, the water level rises to 63.4 mL . Find the volume of the copper sample. If the density of the copper is $8.9 \mathrm{~g} / \mathrm{cm}^{3}$, what is its mass?
Known:
Unknown:

