Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Write the equilibrium expression for K_{c} for the following reactions:
(a) $2 \mathrm{O}_{3}(g) \rightleftharpoons 3 \mathrm{O}_{2}(g)$
(b) $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{NOCl}(g)$
(c) $\mathrm{Ag}^{+}(a q)+2 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(a q)$

Solution

Analyze We are given three equations and are asked to write an equilibrium-constant expression for each.
Plan Using the law of mass action, we write each expression as a quotient having the product concentration terms in the numerator and the reactant concentration terms in the denominator. Each concentration term is raised to the power of its coefficient in the balanced chemical equation.

Solve

(a) $K_{c}=\frac{\left[\mathrm{O}_{2}\right]^{3}}{\left[\mathrm{O}_{3}\right]^{2}}$
(b) $K_{c}=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}$
(c) $K_{c}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{NH}_{3}\right]^{2}}$

Sample Exercise 15.1 Writing Equilibrium-Constant Expressions

Continued

Practice Exercise 1

For the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)$, which of the following is the correct equilibrium-constant expression?
(a) $K_{c}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}$
(b) $K_{c}=\frac{2\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]}{2\left[\mathrm{SO}_{3}\right]}$
(c) $K_{c}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}$
(d) $K_{c}=\frac{2\left[\mathrm{SO}_{3}\right]}{2\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]}$

Practice Exercise 2

Write the equilibrium-constant expression K_{c} for
(a) $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$,
(b) $\mathrm{Cd}^{2+}(a q)+4 \mathrm{Br}(a q) \rightleftharpoons \mathrm{CdBr}_{4}^{2-}(a q)$.

Sample Exercise 15.2 Converting between $\boldsymbol{K}_{\boldsymbol{c}}$ and $\boldsymbol{K}_{\boldsymbol{p}}$

For the Haber process,

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

$K_{c}=9.60$ at $300^{\circ} \mathrm{C}$. Calculate K_{p} for this reaction at this temperature.

Solution

Analyze We are given K_{c} for a reaction and asked to calculate K_{p}.
Plan The relationship between K_{c} and K_{p} is given by Equation 15.15 . To apply that equation, we must determine Δn by comparing the number of moles of product with the number of moles of reactants (Equation 15.16).

Solve With 2 mol of gaseous products $\left(2 \mathrm{NH}_{3}\right)$ and 4 mol of gaseous reactants $\left(1 \mathrm{~N}_{2}+3 \mathrm{H}_{2}\right), \Delta n=2-4=-2$.
(Remember that Δ functions are always based on products minus reactants.) The temperature is $273+300=573 \mathrm{~K}$. The value for the ideal-gas constant, R, is $0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$. Using $K_{c}=9.60$, we therefore have

$$
\begin{aligned}
K_{p} & =K_{c}(R T)^{\Delta n}=(9.60)(0.08206 \times 573)^{-2} \\
& =\frac{(9.60)}{(0.08206 \times 573)^{2}}=4.34 \times 10^{-3}
\end{aligned}
$$

Sample Exercise 15.2 Converting between K_{c} and K_{p}

Continued

Practice Exercise 1

For which of the following reactions is the ratio K_{p} / K_{c} largest at 300 K ?
(a) $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)$
(b) $\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
(c) $\mathrm{Ni}(\mathrm{CO})_{4}(g) \rightleftharpoons \mathrm{Ni}(s)+4 \mathrm{CO}(g)$
(d) $\mathrm{C}(s)+2 \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CH}_{4}(g)$

Practice Exercise 2

For the equilibrium $2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g), K_{c}$ is 4.08×10^{-3} at 1000 K . Calculate the value for K_{p}.

Sample Exercise 15.3 Interpreting the Magnitude of an Equilibrium Constant
 The following diagrams represent three systems at equilibrium, all in the same-size containers. (a) Without doing any calculations, rank the systems in order of increasing K_{c}. (b) If the volume of the containers is 1.0 L and each sphere represents 0.10 mol , calculate K_{c} for each system.
 (i)

 (ii)

 (iii)

Solution

Analyze We are asked to judge the relative magnitudes of three equilibrium constants and then to calculate them.
Plan (a) The more product present at equilibrium, relative to reactant, the larger the equilibrium constant. (b) The equilibrium constant is given by Equation 15.8.

Solve

(a) Each box contains 10 spheres. The amount of product in each varies as follows: (i) 6, (ii) 1, (iii) 8. Therefore, the equilibrium constant varies in the order (ii) < (i) < (iii), from smallest (most reactants) to largest (most products).
(b) In (i), we have $0.60 \mathrm{~mol} / \mathrm{L}$ product and $0.40 \mathrm{~mol} / \mathrm{L}$ reactant, giving $K_{c}=0.60 / 0.40=1.5$. (You will get the same result by merely dividing the number of spheres of each kind: 6 spheres $/ 4$ spheres $=1.5$.) In (ii), we have $0.10 \mathrm{~mol} / \mathrm{L}$ product and $0.90 \mathrm{~mol} / \mathrm{L}$ reactant, giving $K_{c}=0.10 / 0.90=0.11$ (or 1 sphere $/ 9$ spheres $=0.11$). In (iii), we have $0.80 \mathrm{~mol} / \mathrm{L}$ product and $0.20 \mathrm{~mol} / \mathrm{L}$ reactant, giving $K_{c}=0.80 / 0.20=4.0($ or 8 spheres $/ 2$ spheres $=4.0)$. These calculations verify the order in (a).

Sample Exercise 15.3 Interpreting the Magnitude of an Equilibrium Constant

Continued

Comment Imagine a drawing that represents a reaction with a very small or very large value of K_{c}. For example, what would the drawing look like if $K_{c}=1 \times 10^{-5}$? In that case, there would need to be 100,000 reactant molecules for only 1 product molecule. But then, that would be impractical to draw.

Practice Exercise 1

The equilibrium constant for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$ at $2{ }^{\circ} \mathrm{C}$ is $K_{c}=2.0$. If each yellow sphere represents 1 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and each brown sphere 1 mol of NO_{2} which of the following 1.0 L containers represents the equilibrium mixture at $2{ }^{\circ} \mathrm{C}$?

Practice Exercise 2

For the reaction $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g), K_{p}=794$ at 298 K and $K_{p}=55$ at 700 K . Is the formation of HI favored more at the higher or lower temperature?

Sample Exercise 15.4 Combining Equilibrium Expressions

Given the reactions

```
    \(\mathrm{HF}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)\)
\(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \rightleftharpoons 2 \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q)\)
\[
\begin{aligned}
& K_{c}=6.8 \times 10^{-4} \\
& K_{c}=3.8 \times 10^{-6}
\end{aligned}
\]
```

determine the value of K_{c} for the reaction
$2 \mathrm{HF}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \rightleftharpoons 2 \mathrm{~F}^{-}(a q)+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)$

Solution

Analyze We are given two equilibrium equations and the corresponding equilibrium constants and are asked to determine the equilibrium constant for a third equation, which is related to the first two.

Plan We cannot simply add the first two equations to get the third. Instead, we need to determine how to manipulate these equations to come up with equations that we can add to give us the desired equation.

Solve

If we multiply the first equation by 2 and make the corresponding change to its equilibrium constant (raising to the power 2), we get

$$
2 \mathrm{HF}(a q) \rightleftharpoons 2 \mathrm{H}^{+}(a q)+2 \mathrm{~F}^{-}(a q) \quad K_{c}=\left(6.8 \times 10^{-4}\right)^{2}=4.6 \times 10^{-7}
$$

Reversing the second equation and again making the corresponding change to its equilibrium constant (taking the reciprocal) gives

$$
2 \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \quad K_{c}=\frac{1}{3.8 \times 10^{-6}}=2.6 \times 10^{5}
$$

Sample Exercise 15.4 Combining Equilibrium Expressions

Continued
Now, we have two equations that sum to give the net equation, and we can multiply the individual K_{c} values to get the desired equilibrium constant.

```
                \(2 \mathrm{HF}(a q) \rightleftharpoons 2 \mathrm{H}^{+}(a q)+2 \mathrm{~F}^{-}(a q) \quad K_{c}=4.6 \times 10^{-7}\)
\(2 \mathrm{H}^{+}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \quad K_{c}=2.5 \times 10^{5}\)
\(2 \mathrm{HF}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q) \rightleftharpoons 2 \mathrm{~F}^{-}(a q)+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)\)
\[
\begin{aligned}
& K_{c}=4.6 \times 10^{-7} \\
& K_{c}=2.5 \times 10^{5} \\
& K_{c}=\left(4.6 \times 10^{-7}\right)\left(2.6 \times 10^{5}\right)=0.12
\end{aligned}
\]
```


Practice Exercise 1

Given the equilibrium constants for the following two reactions in aqueous solution at $25^{\circ} \mathrm{C}$,

$$
\begin{array}{ll}
\mathrm{HNO}_{2}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) & K_{c}=4.5 \times 10^{-4} \\
\mathrm{H}_{2} \mathrm{SO}_{3}(a q) \rightleftharpoons 2 \mathrm{H}^{+}(a q)+\mathrm{SO}_{3}^{-}(a q) & K_{c}=1.1 \times 10^{-9}
\end{array}
$$

what is the value of K_{c} for the reaction?

$$
2 \mathrm{HNO}_{2}(a q)+\mathrm{SO}_{3}{ }^{2-}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}(a q)+2 \mathrm{NO}_{2}^{-}(a q)
$$

(a) $4.9 \times 10^{-13}\left(\right.$ b) $4.1 \times 10^{5}(\mathbf{c}) 8.2 \times 10^{5}(\mathbf{d}) 1.8 \times 10^{2}(\mathbf{e}) 5.4 \times 10^{-3}$

Practice Exercise 2

Given that, at $700 \mathrm{~K}, K_{p}=54.0$ for the reaction $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$ and $K_{p}=1.04 \times 10^{-4}$ for the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$, determine the value of K_{p} for the reaction $2 \mathrm{NH}_{3}(g)+3 \mathrm{I}_{2}(g) \rightleftharpoons 6 \mathrm{HI}(g)+\mathrm{N}_{2}(g)$ at 700 K.

Sample Exercise 15.5 Writing Equilibrium-Constant Expressions for Heterogeneous Reactions

Write the equilibrium-constant expression K_{c} for
(a) $\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
(b) $\mathrm{SnO}_{2}(s)+2 \mathrm{CO}(g) \rightleftharpoons \mathrm{Sn}(\mathrm{s})+2 \mathrm{CO}_{2}(g)$

Solution

Analyze We are given two chemical equations, both for heterogeneous equilibria, and asked to write the corresponding equilibrium-constant expressions.

Plan We use the law of mass action, remembering to omit any pure solids and pure liquids from the expressions.

Solve

(a) The equilibrium-constant expression is

$$
K_{c}=\frac{[\mathrm{CO}]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}
$$

Because $\mathrm{H}_{2} \mathrm{O}$ appears in the reaction as a liquid, its concentration does not appear in the equilibrium-constant expression.
(b) The equilibrium-constant expression is

$$
K_{c}=\frac{\left[\mathrm{CO}_{2}\right]^{2}}{[\mathrm{CO}]^{2}}
$$

Sample Exercise 15.5 Writing Equilibrium-Constant Expressions for Heterogeneous Reactions

Continued
Because SnO_{2} and Sn are pure solids, their concentrations do not appear in the equilibrium-constant expression.

Practice Exercise 1

Consider the equilibrium that is established in a saturated solution of silver chloride, $\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{AgCl}(s)$. If solid AgCl is added to this solution, what will happen to the concentration of Ag^{+}and Cl^{-}ions in solution?
(a) $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$will both increase (b) $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$will both decrease (c) $\left[\mathrm{Ag}^{+}\right]$will increase and $\left[\mathrm{Cl}^{-}\right]$will decrease (d) $\left[\mathrm{Ag}^{+}\right]$will decrease and $\left[\mathrm{Cl}^{-}\right]$will increase (e) neither $\left[\mathrm{Ag}^{+}\right]$nor $\left[\mathrm{Cl}^{-}\right]$will change

Practice Exercise 2

Write the following equilibrium-constant expressions:
(a) K_{c} for $\mathrm{Cr}(s)+3 \mathrm{Ag}^{+}(a q) \rightleftharpoons \mathrm{Cr}^{3+}(a q)+3 \mathrm{Ag}(s)$,
(b) K_{p} for $3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)$.

Sample Exercise 15.6 Analyzing a Heterogeneous Equilibrium

Each of these mixtures was placed in a closed container and allowed to stand:
(a) $\mathrm{CaCO}_{3}(s)$
(b) $\mathrm{CaO}(s)$ and $\mathrm{CO}_{2}(g)$ at a pressure greater than the value of K_{p}
(c) $\mathrm{CaCO}_{3}(s)$ and $\mathrm{CO}_{2}(g)$ at a pressure greater than the value of K_{p}
(d) $\mathrm{CaCO}_{3}(s)$ and $\mathrm{CaO}(s)$

Determine whether or not each mixture can attain the equilibrium

$$
\mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)
$$

Solution

Analyze We are asked which of several combinations of species can establish an equilibrium between calcium carbonate and its decomposition products, calcium oxide and carbon dioxide.

Plan For equilibrium to be achieved, it must be possible for both the forward process and the reverse process to occur. For the forward process to occur, some calcium carbonate must be present. For the reverse process to occur, both calcium oxide and carbon dioxide must be present. In both cases, either the necessary compounds may be present initially or they may be formed by reaction of the other species.

Sample Exercise 15.6 Analyzing a Heterogeneous Equilibrium

Continued
Solve Equilibrium can be reached in all cases except (c) as long as sufficient quantities of solids are present. (a) CaCO_{3} simply decomposes, forming $\mathrm{CaO}(s)$ and $\mathrm{CO}_{2}(g)$ until the equilibrium pressure of CO_{2} is attained. There must be enough CaCO_{3}, however, to allow the CO_{2} pressure to reach equilibrium. (b) CO_{2} continues to combine with CaO until the partial pressure of the CO_{2} decreases to the equilibrium value. (c) Because there is no CaO present, equilibrium cannot be attained; there is no way the CO_{2} pressure can decrease to its equilibrium value (which would require some CO_{2} to react with CaO). (d) The situation is essentially the same as in (a): CaCO_{3} decomposes until equilibrium is attained. The presence of CaO initially makes no difference.

Practice Exercise 1

If 8.0 g of $\mathrm{NH}_{4} \mathrm{HS}(s)$ is placed in a sealed vessel with a volume of 1.0 L and heated to $200{ }^{\circ} \mathrm{C}$ the reaction $\mathrm{NH}_{4} \mathrm{HS}(s) \rightleftharpoons \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{~S}(g)$ will occur. When the system comes to equilibrium, some $\mathrm{NH}_{4} \mathrm{HS}(s)$ is still present. Which of the following changes will lead to a reduction in the amount of $\mathrm{NH}_{4} \mathrm{HS}(s)$ that is present, assuming in all cases that equilibrium is re-established following the change?
(a) Adding more $\mathrm{NH}_{3}(g)$ to the vessel (b) Adding more $\mathrm{H}_{2} \mathrm{~S}(g)$ to the vessel (c) Adding more $\mathrm{NH}_{4} \mathrm{HS}(s)$ to the vessel (d) Increasing the volume of the vessel (e) Decreasing the volume of the vessel

Practice Exercise 2

When added to $\mathrm{Fe}_{3} \mathrm{O}_{4}(s)$ in a closed container, which one of the following substances- $\mathrm{H}_{2}(g), \mathrm{H}_{2} \mathrm{O}(g), \mathrm{O}_{2}(g)-$ allows equilibrium to be established in the reaction $3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)$?

Sample Exercise 15.7 Calculating K When All Equilibrium Concentrations Are Known

After a mixture of hydrogen and nitrogen gases in a reaction vessel is allowed to attain equilibrium at $472^{\circ} \mathrm{C}$, it is found to contain $7.38 \mathrm{~atm} \mathrm{H}_{2}, 2.46 \mathrm{~atm} \mathrm{~N}_{2}$, and $0.166 \mathrm{~atm} \mathrm{NH}_{3}$. From these data, calculate the equilibrium constant K_{p} for the reaction

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)
$$

Solution

Analyze We are given a balanced equation and equilibrium partial pressures and are asked to calculate the value of the equilibrium constant.

Plan Using the balanced equation, we write the equilibrium constant expression. We then substitute the equilibrium partial pressures into the expression and solve for K_{p}.

Solve

$$
K_{p}=\frac{\left(P_{\mathrm{NH}_{3}}\right)^{2}}{P_{\mathrm{N}_{2}}\left(P_{\mathrm{H}_{2}}\right)^{3}}=\frac{(0.166)^{2}}{(2.46)(7.38)^{3}}=2.79 \times 10^{-5}
$$

Sample Exercise 15.7 Calculating K When All Equilibrium Concentrations Are Known

Continued

Practice Exercise 1

A mixture of gaseous sulfur dioxide and oxygen are added to a reaction vessel and heated to 1000 K where they react to form $\mathrm{SO}_{3}(\mathrm{~g})$. If the vessel contains $0.669 \mathrm{~atm} \mathrm{SO}_{2}(\mathrm{~g}), 0.395 \mathrm{~atm} \mathrm{O}_{2}(\mathrm{~g})$, and $0.0851 \mathrm{~atm} \mathrm{SO}_{3}(g)$ after the system has reached equilibrium, what is the equilibrium constant K_{p} for the reaction $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)$?
(a) 0.0410 (b) 0.322 (c) 24.4 (d) 3.36 (e) 3.11

Practice Exercise 2

An aqueous solution of acetic acid is found to have the following equilibrium concentrations at $25^{\circ} \mathrm{C}$: $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.65 \times 10^{-2} \mathrm{M} ;\left[\mathrm{H}^{+}\right]=5.44 \times 10^{-4} \mathrm{M}$; and $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=5.44 \times 10^{-4} \mathrm{M}$. Calculate the equilibrium constant K_{c} for the ionization of acetic acid at $25^{\circ} \mathrm{C}$. The reaction is

$$
\mathrm{CH}_{3} \mathrm{COOH}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)
$$

Sample Exercise 15.8 Calculating K from Initial and Equilibrium Concentrations

A reaction vessel containing $1.000 \times 10^{-3} \mathrm{M} \mathrm{H}_{2}$ gas and $2.000 \times 10^{-3} M \mathrm{I}_{2}$ gas is heated to $448{ }^{\circ} \mathrm{C}$ where the following reaction takes place

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

What is the value of the equilibrium constant K_{c} if once the system comes to equilibrium at $448^{\circ} \mathrm{C}$ the concentration of HI is $1.87 \times 10^{-3} \mathrm{M}$?

Solution

Analyze We are given the initial concentrations of H_{2} and I_{2} and the equilibrium concentration of HI . We are asked to calculate the equilibrium constant K_{c} for $\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$.

Plan We construct a table to find equilibrium concentrations of all species and then use the equilibrium concentrations to calculate the equilibrium constant.

Solve

(1) We tabulate the initial and equilibrium concentrations of as many species as we can. We also provide space in our table for listing the changes in concentrations. As shown, it is convenient to use the chemical equation as the heading for the table.

$\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$			
Initial concentration (M)	1.000×10^{-3}	2.000×10^{-3}	0
Change in concentration (M)			
Equilibrium concentration (M)			1.87×10^{-3}

Sample Exercise 15.8 Calculating K from Initial and Equilibrium Concentrations

Continued
(2) We calculate the change in HI concentration, which is the difference between the equilibrium and initial values:

$$
\text { Change in }[\mathrm{HI}]=1.87 \times 10^{-3} \mathrm{M}-0=1.87 \times 10^{-3} \mathrm{M}
$$

(3) We use the coefficients in the balanced equation to relate the change in [HI] to the changes in $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{I}_{2}\right]$:

$$
\begin{aligned}
& \left(1.87 \times 10^{-3} \frac{\mathrm{molHI}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{molHI}}\right)=0.935 \times 10^{-3} \frac{\mathrm{~mol} \mathrm{H}_{2}}{\mathrm{~L}} \\
& \left(1.87 \times 10^{-3} \frac{\mathrm{molHI}}{\mathrm{~L}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{I}_{2}}{2 \mathrm{molHI}}\right)=0.935 \times 10^{-3} \frac{\mathrm{~mol} \mathrm{I}_{2}}{\mathrm{~L}}
\end{aligned}
$$

(4) We calculate the equilibrium concentrations of H_{2} and I_{2}, using initial concentrations and changes in concentration. The equilibrium concentration equals the initial concentration minus that consumed:

$$
\begin{aligned}
{\left[\mathrm{H}_{2}\right] } & =\left(1.000 \times 10^{-3} M\right)-\left(0.935 \times 10^{-3} M\right) \\
{\left[\mathrm{I}_{2}\right] } & =\left(2.000 \times 10^{-3} M\right)-\left(0.935 \times 10^{-3} M\right)
\end{aligned}=1.065 \times 10^{-3} M \times 10^{-3} M
$$

Sample Exercise 15.8 Calculating K from Initial and Equilibrium Concentrations

Continued
(5) Our table now is complete (with equilibrium concentrations in blue for emphasis):

$\mathrm{H}_{2}(g)$	$\mathrm{I}_{2}(g)$	\rightleftharpoons	$2 \mathrm{HI}(g)$
Initial concentration (M)	1.000×10^{-3}	2.000×10^{-3}	0
Change in concentration (M)	-0.935×10^{-3}	-0.935×10^{-3}	$+1.87 \times 10^{-3}$
Equilibrium concentration (M)	0.065×10^{-3}	1.065×10^{-3}	1.87×10^{-3}

Notice that the entries for the changes are negative when a reactant is consumed and positive when a product is formed.

Finally, we use the equilibrium-constant expression to calculate the equilibrium constant:

$$
K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{\left(1.87 \times 10^{-3}\right)^{2}}{\left(0.065 \times 10^{-3}\right)\left(1.065 \times 10^{-3}\right)}=51
$$

Comment The same method can be applied to gaseous equilibrium problems to calculate K_{p}, in which case partial pressures are used as table entries in place of molar concentrations. Your instructor may refer to this kind of table as an ICE chart, where ICE stands for \underline{I} nitial - \underline{C} hange - $\underline{E q u i l i b r i u m . ~}$

Sample Exercise 15.8 Calculating K from Initial and Equilibrium Concentrations

Continued

Practice Exercise 1

In Section 15.1, we discussed the equilibrium between $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ and $\mathrm{NO}_{2}(g)$. Let's return to that equation in a quantitative example. When 9.2 g of frozen $\mathrm{N}_{2} \mathrm{O}_{4}$ is added to a 0.50 L reaction vessel that is heated to 400 K and allowed to come to equilibrium, the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is determined to be 0.057 M . Given this information, what is the value of K_{c} for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$ at 400 K ? (a) 0.23 (b) 0.36 (c) 0.13 (d) 1.4 (e) 2.5

Practice Exercise 2

The gaseous compound BrCl decomposes at high temperature in a sealed container: $2 \mathrm{BrCl}(g) \rightleftharpoons \mathrm{Br}_{2}(g)+\mathrm{Cl}_{2}(g)$. Initially, the vessel is charged at 500 K with $\mathrm{BrCl}(g)$ at a partial pressure of 0.500 atm . At equilibrium, the $\mathrm{BrCl}(g)$ partial pressure is 0.040 atm . Calculate the value of K_{p} at 500 K .

Sample Exercise 15.9 Predicting the Direction of Approach to Equilibrium

At $448^{\circ} \mathrm{C}$, the equilibrium constant K_{c} for the reaction

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

is 50.5 . Predict in which direction the reaction proceeds to reach equilibrium if we start with $2.0 \times 10^{-2} \mathrm{~mol}$ of HI , $1.0 \times 10^{-2} \mathrm{~mol}$ of H_{2}, and $3.0 \times 10^{-2} \mathrm{~mol}$ of I_{2} in a $2.00-\mathrm{L}$ container.

Solution

Analyze We are given a volume and initial molar amounts of the species in a reaction and asked to determine in which direction the reaction must proceed to achieve equilibrium.

Plan We can determine the starting concentration of each species in the reaction mixture. We can then substitute the starting concentrations into the equilibrium-constant expression to calculate the reaction quotient, Q_{c}. Comparing the magnitudes of the equilibrium constant, which is given, and the reaction quotient will tell us in which direction the reaction will proceed.

Solve

The initial concentrations are

$$
\begin{aligned}
{[\mathrm{HI}] } & =2.0 \times 10^{-2} \mathrm{~mol} / 2.00 \mathrm{~L}=1.0 \times 10^{-2} \mathrm{M} \\
{\left[\mathrm{H}_{2}\right] } & =1.0 \times 10^{-2} \mathrm{~mol} / 2.00 \mathrm{~L}=5.0 \times 10^{-3} \mathrm{M} \\
{\left[\mathrm{I}_{2}\right] } & =3.0 \times 10^{-2} \mathrm{~mol} / 2.00 \mathrm{~L}=1.5 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

Sample Exercise 15.9 Predicting the Direction of Approach to Equilibrium

Continued
The reaction quotient is therefore

$$
Q_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{\left(1.0 \times 10^{-2}\right)^{2}}{\left(5.0 \times 10^{-3}\right)\left(1.5 \times 10^{-2}\right)}=1.3
$$

Because $Q_{c}<K_{c}$, the concentration of HI must increase and the concentrations of H_{2} and I_{2} must decrease to reach equilibrium; the reaction as written proceeds left to right to attain equilibrium.

Practice Exercise 1

Which of the following statements accurately describes what would happen to the direction of the reaction described in the sample exercise above, if the size of the container were different from 2.00 L ? (a) The reaction would proceed in the opposite direction (from right to left) if the container volume were reduced sufficiently. (b) The reaction would proceed in the opposite direction if the container volume were expanded sufficiently. (c) The direction of this reaction does not depend on the volume of the container.

Practice Exercise 2

At 1000 K , the value of K_{p} for the reaction $2 \mathrm{SO}_{3}(g) \rightleftharpoons 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$ is 0.338 . Calculate the value for Q_{p}, and predict the direction in which the reaction proceeds toward equilibrium if the initial partial pressures are $P_{\mathrm{SO}_{3}}=0.16 \mathrm{~atm} ; P_{\mathrm{SO}_{2}}=0.41 \mathrm{~atm} ; P_{\mathrm{O}_{2}}=2.5 \mathrm{~atm}$.

Sample Exercise 15.10 Calculating Equilibrium Concentrations

For the Haber process, $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g), K_{p}=1.45 \times 10^{-5}$, at $500{ }^{\circ} \mathrm{C}$. In an equilibrium mixture of the three gases at $500^{\circ} \mathrm{C}$, the partial pressure of H_{2} is 0.928 atm and that of N_{2} is 0.432 atm . What is the partial pressure of NH_{3} in this equilibrium mixture?

Solution

Analyze We are given an equilibrium constant, K_{p}, and the equilibrium partial pressures of two of the three substances in the equation $\left(\mathrm{N}_{2}\right.$ and $\left.\mathrm{H}_{2}\right)$, and we are asked to calculate the equilibrium partial pressure for the third substance $\left(\mathrm{NH}_{3}\right)$.

Plan We can set K_{p} equal to the equilibrium-constant expression and substitute in the partial pressures that we know. Then we can solve for the only unknown in the equation.

Solve

We tabulate the equilibrium pressures:

Equilibrium pressure (atm)

$$
\begin{array}{lc}
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) & \rightleftharpoons \\
0.432 \quad 0.928 & \mathrm{NH}_{3}(g) \\
& x
\end{array}
$$

Because we do not know the equilibrium pressure of NH_{3}, we represent it with x. At equilibrium, the pressures must satisfy the equilibrium-constant expression:

$$
K_{p}=\frac{\left(P_{\mathrm{NH}_{3}}\right)^{2}}{P_{\mathrm{N}_{2}}\left(P_{\mathrm{H}_{2}}\right)^{3}}=\frac{x^{2}}{(0.432)(0.928)^{3}}=1.45 \times 10^{-5}
$$

Sample Exercise 15.10 Calculating Equilibrium Concentrations

Continued
We now rearrange the equation to solve for x :

$$
\begin{aligned}
x^{2} & =\left(1.45 \times 10^{-5}\right)(0.432)(0.928)^{3}=5.01 \times 10^{-6} \\
x & =\sqrt{5.01 \times 10^{-6}}=2.24 \times 10^{-3} \mathrm{~atm}=P_{\mathrm{NH}_{3}}
\end{aligned}
$$

Check We can always check our answer by using it to recalculate the value of the equilibrium constant:

$$
K_{p}=\frac{\left(2.24 \times 10^{-3}\right)^{2}}{(0.432)(0.928)^{3}}=1.45 \times 10^{-5}
$$

Practice Exercise 1

At 500 K , the reaction $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{NOCl}(g)$ has $K_{p}=51$. In an equilibrium mixture at 500 K , the partial pressure of NO is 0.125 atm and Cl_{2} is 0.165 atm . What is the partial pressure of NOCl in the equilibrium mixture?
(a) 0.13 atm (b) 0.36 atm (c) 1.0 atm (d) $5.1 \times 10^{-5} \mathrm{~atm}$ (e) 0.125 atm

Practice Exercise 2

At 500 K , the reaction $\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$ has $K_{p}=0.497$. In an equilibrium mixture at 500 K , the partial pressure of PCl_{5} is 0.860 atm and that of PCl_{3} is 0.350 atm . What is the partial pressure of Cl_{2} in the equilibrium mixture?

Sample Exercise 15.11 Calculating Equilibrium Concentrations from Initial Concentrations

A 1.000-L flask is filled with 1.000 mol of $\mathrm{H}_{2}(g)$ and 2.000 mol of $\mathrm{I}_{2}(\mathrm{~g})$ at $448^{\circ} \mathrm{C}$. The value of the equilibrium constant K_{c} for the reaction

$$
\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)
$$

at $448{ }^{\circ} \mathrm{C}$ is 50.5 . What are the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI in moles per liter?

Solution

Analyze We are given the volume of a container, an equilibrium constant, and starting amounts of reactants in the container and are asked to calculate the equilibrium concentrations of all species.

Plan In this case, we are not given any of the equilibrium concentrations. We must develop some relationships that relate the initial concentrations to those at equilibrium. The procedure is similar in many regards to that outlined in Sample Exercise 15.8, where we calculated an equilibrium constant using initial concentrations.

Solve

(1) We note the initial concentrations of H_{2} and I_{2} :

$$
\left[\mathrm{H}_{2}\right]=1.000 \mathrm{M} \text { and }\left[\mathrm{I}_{2}\right]=2.000 \mathrm{M}
$$

Sample Exercise 15.11 Calculating Equilibrium Concentrations from Initial Concentrations

Continued
(2) We construct a table in which we tabulate the initial concentrations:

$\mathrm{H}_{2}(g)$		$+\mathrm{I}_{2}(g) \rightleftharpoons$	$2 \mathrm{HI}(g)$
Initial concentration (M)	1.000	2.000	0
Change in concentration (M)			
Equilibrium concentration (M)			

(3) We use the stoichiometry of the reaction to determine the changes in concentration that occur as the reaction proceeds to equilibrium. The H_{2} and I_{2} concentrations will decrease as equilibrium is established and that of HI will increase. Let's represent the change in concentration of H_{2} by x. The balanced chemical equation tells us that for each $x \mathrm{~mol}$ of H_{2} that reacts, $x \mathrm{~mol}$ of I_{2} are consumed and $2 x \mathrm{~mol}$ of HI are produced:

$\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons$			$2 \mathrm{HI}(g)$
Initial concentration (M)	1.000	2.000	0
Change in concentration (M)	$-x$	$-x$	$+2 x$
Equilibrium concentration (M)			

Sample Exercise 15.11 Calculating Equilibrium Concentrations from Initial Concentrations

Continued
(4) We use initial concentrations and changes in concentrations, as dictated by stoichiometry, to express the equilibrium concentrations. With all our entries, our table now looks like this:

$\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{HI}(g)$			
Initial concentration (M)	1.000	2.000	0
Change in concentration (M)	$-x$	$-x$	$+2 x$
Equilibrium concentration (M)	$1.000-x$	$2.000-x$	$2 x$

(5) We substitute the equilibrium concentrations into the equilibrium-constant expression and solve for x :

$$
K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(2 x)^{2}}{(1.000-x)(2.000-x)}=50.5
$$

If you have an equation-solving calculator, you can solve this equation directly for x. If not, expand this expression to obtain a quadratic equation in x :

$$
\begin{aligned}
& 4 x^{2}=50.5\left(x^{2}-3.000 x+2.000\right) \\
& 46.5 x^{2}-151.5 x+101.0=0
\end{aligned}
$$

Solving the quadratic equation (Appendix A.3) leads to two solutions for x :

$$
x=\frac{-(-151.5) \pm \sqrt{(-151.5)^{2}-4(46.5)(101.0)}}{2(46.5)}=2.323 \text { or } 0.935
$$

Sample Exercise 15.11 Calculating Equilibrium Concentrations from Initial Concentrations

Continued
When we substitute $x=2.323$ into the expressions for the equilibrium concentrations, we find negative concentrations of H_{2} and I_{2}. Because a negative concentration is not chemically meaningful, we reject this solution. We then use $x=0.935$ to find the equilibrium concentrations:

$$
\begin{aligned}
{\left[\mathrm{H}_{2}\right] } & =1.000-x=0.065 \mathrm{M} \\
{\left[\mathrm{I}_{2}\right] } & =2.000-x=1.065 \mathrm{M} \\
{[\mathrm{HI}] } & =2 x=1.87 \mathrm{M}
\end{aligned}
$$

Check We can check our solution by putting these numbers into the equilibrium-constant expression to assure that we correctly calculate the equilibrium constant:

$$
K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(1.87)^{2}}{(0.065)(1.065)}=51
$$

Comment Whenever you use a quadratic equation to solve an equilibrium problem, one of the solutions to the equation will give you a value that leads to negative concentrations and thus is not chemically meaningful. Reject this solution to the quadratic equation.

Sample Exercise 15.11 Calculating Equilibrium Concentrations from Initial Concentrations

Continued

Practice Exercise 1

For the equilibrium $\mathrm{Br}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{BrCl}(g)$, the equilibrium constant K_{p} is 7.0 at 400 K . If a cylinder is charged with $\mathrm{BrCl}(g)$ at an initial pressure of 1.00 atm and the system is allowed to come to equilibrium what is the final (equilibrium) pressure of BrCl ? (a) $0.57 \mathrm{~atm}(\mathbf{b}) 0.22 \mathrm{~atm}(\mathbf{c}) 0.45 \mathrm{~atm}(\mathbf{d}) 0.15 \mathrm{~atm}$ (e) 0.31 atm

Practice Exercise 2

For the equilibrium $\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$, the equilibrium constant K_{p} is 0.497 at 500 K . A gas cylinder at 500 K is charged with $\mathrm{PCl}_{5}(g)$ at an initial pressure of 1.66 atm . What are the equilibrium pressures of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$, and Cl_{2} at this temperature?

Sample Exercise 15.12 Using Le Châtelier's Principle to Predict Shifts in Equilibrium

Consider the equilibrium

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad \Delta H^{\circ}=58.0 \mathrm{~kJ}
$$

In which direction will the equilibrium shift when (a) $\mathrm{N}_{2} \mathrm{O}_{4}$ is added, (b) NO_{2} is removed, (c) the pressure is increased by addition of $\mathrm{N}_{2}(g)$, (d) the volume is increased, (e) the temperature is decreased?

Solution

Analyze We are given a series of changes to be made to a system at equilibrium and are asked to predict what effect each change will have on the position of the equilibrium.

Plan Le Châtelier's principle can be used to determine the effects of each of these changes.

Solve

(a) The system will adjust to decrease the concentration of the added $\mathrm{N}_{2} \mathrm{O}_{4}$, so the equilibrium shifts to the right, in the direction of the product.
(b) The system will adjust to the removal of NO_{2} by shifting to the side that produces more NO_{2}; thus, the equilibrium shifts to the right.
(c) Adding N_{2} will increase the total pressure of the system, but N_{2} is not involved in the reaction. The partial pressures of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are therefore unchanged, and there is no shift in the position of the equilibrium.
(d) If the volume is increased, the system will shift in the direction that occupies a larger volume (more gas molecules); thus, the equilibrium shifts to the right.

Sample Exercise 15.12 Using Le Châtelier's Principle to Predict Shifts in Equilibrium

Continued
(e) The reaction is endothermic, so we can imagine heat as a reagent on the reactant side of the equation. Decreasing the temperature will shift the equilibrium in the direction that produces heat, so the equilibrium shifts to the left, toward the formation of more $\mathrm{N}_{2} \mathrm{O}_{4}$. Note that only this last change also affects the value of the equilibrium constant, K.

Practice Exercise 1

For the reaction

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightleftharpoons 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \quad \Delta H^{\circ}=-904 \mathrm{~kJ}
$$

which of the following changes will shift the equilibrium to the right, toward the formation of more products?
(a) Adding more water vapor (b) Increasing the temperature (c) Increasing the volume of the reaction vessel
(d) Removing $\mathrm{O}_{2}(g)$ (e) Adding 1 atm of $\mathrm{Ne}(g)$ to the reaction vessel.

Practice Exercise 2

For the reaction

$$
\mathrm{PCl}_{5}(g) \rightleftharpoons \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \quad \Delta H^{\circ}=87.9 \mathrm{~kJ}
$$

in which direction will the equilibrium shift when (a) $\mathrm{Cl}_{2}(g)$ is removed, (b) the temperature is decreased, (c) the volume of the reaction system is increased, (d) $\mathrm{PCl}_{3}(g)$ is added?

Sample Integrative Exercise Putting Concepts Together

At temperatures near $800^{\circ} \mathrm{C}$, steam passed over hot coke (a form of carbon obtained from coal) reacts to form CO and H_{2} :

$$
\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2}(g)
$$

The mixture of gases that results is an important industrial fuel called water gas. (a) At $800{ }^{\circ} \mathrm{C}$ the equilibrium constant for this reaction is $K_{p}=14.1$. What are the equilibrium partial pressures of $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}$, and H_{2} in the equilibrium mixture at this temperature if we start with solid carbon and 0.100 mol of $\mathrm{H}_{2} \mathrm{O}$ in a $1.00-\mathrm{L}$ vessel?
(b) What is the minimum amount of carbon required to achieve equilibrium under these conditions? (c) What is the total pressure in the vessel at equilibrium? (d) At $25^{\circ} \mathrm{C}$ the value of K_{p} for this reaction is 1.7×10^{-21}. Is the reaction exothermic or endothermic? (e) To produce the maximum amount of CO and H_{2} at equilibrium, should the pressure of the system be increased or decreased?

Solution

(a) To determine the equilibrium partial pressures, we use the ideal-gas equation, first determining the starting partial pressure of water.

$$
P_{\mathrm{H}_{2} \mathrm{O}}=\frac{n_{\mathrm{H}_{2} \mathrm{O}} R T}{V}=\frac{(0.100 \mathrm{~mol})(0.08206 \mathrm{~K}-\mathrm{atm} / \mathrm{mol}-\mathrm{K})(1073 \mathrm{~K})}{1.00 \mathrm{~K}}=8.81 \mathrm{~atm}
$$

We then construct a table of initial partial pressures and their changes as equilibrium is achieved:

$\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{H}_{2}(g)$				
Initial partial pressure (atm)		8.81	0	0
Change in partial pressure (atm)		$-x$	$+x$	$+x$
Equilibrium partial pressure (atm)		$8.81-x$	x	x

Sample Integrative Exercise Putting Concepts Together

Continued
There are no entries in the table under $\mathrm{C}(s)$ because the reactant, being a solid, does not appear in the equilibriumconstant expression. Substituting the equilibrium partial pressures of the other species into the equilibriumconstant expression for the reaction gives:

$$
K_{p}=\frac{P_{\mathrm{CO}} P_{\mathrm{H}_{2}}}{P_{\mathrm{H}_{2} \mathrm{O}}}=\frac{(x)(x)}{(8.81-x)}=14.1
$$

Multiplying through by the denominator gives a quadratic equation in x :

$$
\begin{aligned}
& x^{2}=(14.1)(8.81-x) \\
& x^{2}+14.1 x-124.22=0
\end{aligned}
$$

Solving this equation for x using the quadratic formula yields $x=6.14 \mathrm{~atm}$.
Hence, the equilibrium partial pressures are $P_{\mathrm{CO}}=x=6.14 \mathrm{~atm}$,
$P_{\mathrm{H}_{2}}=x=6.14 \mathrm{~atm}$, and $P_{\mathrm{H}_{2} \mathrm{O}}=(8.81-x)=2.67 \mathrm{~atm}$.
(b) Part (a) shows that $x=6.14 \mathrm{~atm}$ of $\mathrm{H}_{2} \mathrm{O}$ must react for the system to achieve equilibrium. We can use the ideal-gas equation to convert this partial pressure into a mole amount.

$$
\begin{aligned}
n & =\frac{P V}{R T} \\
& =\frac{(6.14 \mathrm{~atm})(1.00 \mathrm{~L})}{(0.08206 \mathrm{~K}-\mathrm{atm} / \mathrm{mol}-\mathrm{K})(1073 \mathrm{~K})}=0.0697 \mathrm{~mol}
\end{aligned}
$$

Thus, 0.0697 mol of $\mathrm{H}_{2} \mathrm{O}$ and the same amount of C must react to achieve equilibrium. As a result, there must be at least 0.0697 mol of $\mathrm{C}(0.836 \mathrm{~g} \mathrm{C})$ present among the reactants at the start of the reaction.

Sample Integrative Exercise Putting Concepts Together

Continued
(c) The total pressure in the vessel at equilibrium is simply the sum of the equilibrium partial pressures:

$$
\begin{aligned}
P_{\text {total }} & =P_{\mathrm{H}_{2} \mathrm{O}}+P_{\mathrm{CO}}+P_{\mathrm{H}_{2}} \\
& =2.67 \mathrm{~atm}+6.14 \mathrm{~atm}+6.14 \mathrm{~atm}=14.95 \mathrm{~atm}
\end{aligned}
$$

(d) In discussing Le Châtelier's principle, we saw that endothermic reactions exhibit an increase in K_{p} with increasing temperature. Because the equilibrium constant for this reaction increases as temperature increases, the reaction must be endothermic. From the enthalpies of formation given in Appendix C, we can verify our prediction by calculating the enthalpy change for the reaction:

$$
\begin{aligned}
\Delta H^{\circ}= & \Delta H_{f}^{\circ}(\mathrm{CO}(g))+\Delta H_{f}^{\circ}\left(\mathrm{H}_{2}(g)\right)-\Delta H_{f}^{\circ}(\mathrm{C}(s, \text { graphite })) \\
& -\Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}(g)\right)=+131.3 \mathrm{~kJ}
\end{aligned}
$$

The positive sign for ΔH° indicates that the reaction is endothermic.
(e) According to Le Châtelier's principle, a decrease in the pressure causes a gaseous equilibrium to shift toward the side of the equation with the greater number of moles of gas. In this case, there are 2 mol of gas on the product side and only one on the reactant side. Therefore, the pressure should be decreased to maximize the yield of the CO and H_{2}.

