Molarity \& Dilution
Name \qquad
$M_{1} V_{1}=M_{2} V_{2} \quad$ Set your problems up so that the first condition $\left(M_{1}\right.$ and $\left.V_{1}\right)$ is the more concentrated.
To find the amount of water added for the dilution just subtract the $V_{2}-V_{1}$

1. A student wishes to prepare 250 . mL of a 0.15 M NaOH solution from a 6.00 M NaOH stock solution. What volume of the stock solution should she use?
2. How much water must be added to a 2.50 M HCl solution to obtain $500 . \mathrm{mL}$ of a 0.100 M HCl solution?
3. What is the final volume of a 0.15 M solution prepared from 25.0 mL of a 6.0 M sodium acetate solution?
4. How much water does a student add to 25.0 mL of 1.00 M acetic acid solution to make it 0.100 M ? II. Molarity Problems

$$
\text { Definition: Molarity }=\begin{aligned}
& \text { moles of solute } \\
& \text { liters of solution }
\end{aligned} \stackrel{n}{V}=
$$

5. What is the molarity of a solution that contains 12.5 g sodium acetate if the volume of solution is $250 . \mathrm{mL}$?
6. What is the volume of a 2.50 M solution that contains 98.0 grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
7. What mass of citric acid ($\mathrm{MW}=192.14 \mathrm{~g} / \mathrm{mol}$) is contained in 100.0 mL of a 5.00 M citric acid solution?
8. What mass of sodium hydroxide is present in 100.0 mL of a 2.50 M NaOH solution?
9. What is the concentration of a solution that contains 25.0 g acetic acid and has a volume of 125 mL ?
10. 3.5 moles of potassium nitrate are dissolved in water so that the final volume is 325 mL . What is the concentration of this solution?
11. 5.45 moles of an acid are diluted to 2.50 L of solution. What is the molarity of the acid solution?
12. Explain how you would make a 3.50 M solution that contains 58.0 grams of potassium carbonate?
