
Prefixes and Equalities

Using a retinal camera, an ophthalmologist photographs the retina of the eye.

Learning Goal Use the numerical values of prefixes to write a metric equality.

Prefixes

In the metric and SI systems of units, a **prefix** attached to any unit increases or decreases its size by some factor of 10.

1 kilometer (1 km) = 1000 m

1 millimeter (1 mm) = 0.001 m

Prefixes and Equalities

- The relationship of a prefix to a unit can be expressed by replacing the prefix with its numerical value.
- For example, when the prefix *kilo* in kilometer is replaced with its value of 1000, we find that a kilometer is equal to 1000 meters.

```
1 kilometer = 1000 meters
```

```
1 kiloliter = 1000 liters
```

Metric and SI Prefixes That Increase

TABLE 2.5 Metric and SI Prefixes

Prefix	Symbol	Numerical Value	Scientific Notation	Equality
Prefixes 1	That Increase	the Size of the Unit		
tera	T	1 000 000 000 000	10 ¹²	$1 \text{ Ts} = 1 \times 10^{12} \text{ s}$ $1 \text{ s} = 1 \times 10^{-12} \text{ Ts}$
giga	G	1 000 000 000	109	$1 \text{ Gm} = 1 \times 10^9 \text{ m}$ $1 \text{ m} = 1 \times 10^{-9} \text{ Gm}$
mega	M	1 000 000	106	$1 \text{ Mg} = 1 \times 10^6 \text{ g}$ $1 \text{ g} = 1 \times 10^{-6} \text{ Mg}$
kilo	k	1 000	10^{3}	$1 \text{ km} = 1 \times 10^3 \text{ m}$ $1 \text{ m} = 1 \times 10^{-3} \text{ km}$

Metric and SI Prefixes That Decrease

TABLE 2.5 Metric and SI Prefixes (continued)

Prefixes Tl	nat Decrea	se the Size of the Unit		
deci	d	0.1	10 ⁻¹	$1 dL = 1 \times 10^{-1} L$ 1 L = 10 dL
centi	с	0.01	10^{-2}	$1 \text{ cm} = 1 \times 10^{-2} \text{ m}$ 1 m = 100 cm
milli	m	0.001	10^{-3}	$1 \text{ ms} = 1 \times 10^{-3} \text{ s}$ $1 \text{ s} = 1 \times 10^{3} \text{ ms}$
micro	μ^*	0.000 001	10^{-6}	$1 \mu g = 1 \times 10^{-6} g$ $1 g = 1 \times 10^{6} \mu g$
nano	n	0.000 000 001	10 ⁻⁹	$1 \text{ nm} = 1 \times 10^{-9} \text{ m}$ $1 \text{ m} = 1 \times 10^{9} \text{ nm}$
pico	p	0.000 000 000 001	10^{-12}	$1 \text{ ps} = 1 \times 10^{-12} \text{ s}$ $1 \text{ s} = 1 \times 10^{12} \text{ ps}$

^{*}In medicine, the abbreviation mc for the prefix micro is used because the symbol μ may be misread, which could result in a medication error. Thus, 1 μ g would be written as 1 mcg.

Daily Values for Selected Nutrients

The U.S. Food and Drug Administration uses metric prefixes to express amounts of daily nutrient requirements.

TABLE 2.4 Daily Values for Selected Nutrients

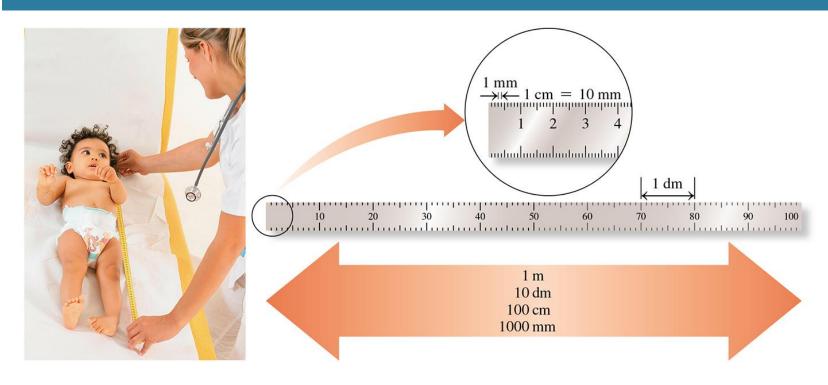
Nutrient	Amount Recommended	
Calcium	1.0 g	
Copper	2 mg	
Iodine	$150 \mu g (150 \mathrm{mcg})$	
Iron	18 mg	
Magnesium	400 mg	
Niacin	20 mg	
Phosphorus	800 mg	
Potassium	3.5 g	
Selenium	70. μg (70. mcg)	
Sodium	2.4 g	
Zinc	15 mg	

Fill in the blanks with the correct prefix.

A.
$$1000 \text{ m} = 1 \underline{\hspace{1cm}} \text{m}$$

B. 1 ×
$$10^{-6}$$
 g = 1 ___g

C.
$$0.1 L = 1 _L$$


Measuring Length: Equalities

An **equality** shows the relationship between two units that measure the same quantity.

Each of the following equalities describes the same length in a different unit:

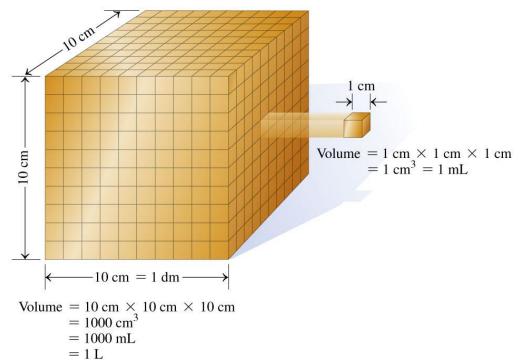
```
1 \text{ m} = 100 \text{ cm} = 1 \times 10^{2} \text{ cm}
1 \text{ m} = 1000 \text{ mm} = 1 \times 10^{3} \text{ mm}
1 \text{ cm} = 10 \text{ mm} = 1 \times 10^{1} \text{ mm}
```

Measuring Length: Equalities

The metric length of 1 m is the same length as 10 dm, 100 cm, and 1000 mm.

Measuring Volume: Equalities

Volumes of 1 L or smaller are common in the health sciences. When a liter is divided into 10 equal portions, each portion is called a *deci*liter (dL).

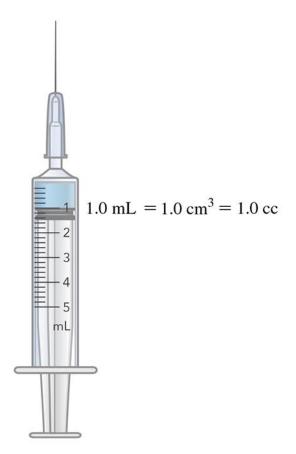

The following are examples of some volume equalities:

$$1 L = 10 dL$$
 = $1 \times 10^{1} dL$
 $1 L = 1000 mL$ = $1 \times 10^{3} mL$

$$1 dL = 100 mL = 1 \times 10^2 mL$$

Measuring Volume

The **cubic centimeter** (cm^3 or cc) is the volume of a cube with the dimensions 1 cm \times 1 cm \times 1 cm.



A cube measuring 10 cm on each side has a volume of 1000 cm³, or 1 L; a cube measuring 1 cm on each side has a volume of 1 cm³, 1 cc, or 1 mL.

Measuring Volume

A **cubic centimeter** (cc) has the same volume as a milliliter, and the units are often used interchangeably.

$$1.0 \text{ cm}^3 = 1.0 \text{ cc} = 1.0 \text{ mL}$$

Measuring Mass: Equalities

When you visit the doctor for a physical examination, he or she records your mass in kilograms (kg) and laboratory results in micrograms (μ g or mcg).

The following are examples of equalities between different metric units of mass:

1 kg = 1000 g = 1 × 10³ g
1 g = 1000 mg = 1 × 10³ mg
1 g = 100 cg = 1 × 10² cg
1 mg = 1000
$$\mu$$
g (mcg) = 1 × 10³ μ g (mcg)

Identify the larger unit in each of the following:

- A. mm or cm
- **B.** kilogram or centigram
- **C.** dL or μ L
- **D.** mcg or mg

Indicate the unit that completes each of the following equalities:

A.
$$1000 \text{ m} =$$

(1) 1 mm

(2) 1 km

(3) 1 dm

B.
$$0.01 \text{ m} =$$

(1) 1 cm

(2) 1 mm

(3) 1 dm

Complete each of the following equalities:

A.
$$1 \text{ kg} = \underline{\hspace{1cm}}$$
 (1) 10 g

B.
$$1 \text{ cL} = \underline{\hspace{1cm}}$$
 (1) 0.001 L

Writing Conversion Factors

In the United States, the contents of many packaged foods are listed in both U.S. and metric units.

Learning Goal Write a conversion factor for two units that describe the same quantity.

Equalities

Equalities

- use two different units to describe the same quantity
- can be between units of the metric system, or between U.S. units, or between metric and U.S. units

$$1 \text{ m} = 1000 \text{ mm}$$

$$1 \text{ lb} = 16 \text{ oz}$$

$$2.20 \text{ lb} = 1 \text{ kg}$$

Equalities on Food Labels

The contents of many packaged foods

- are listed in both metric and U.S. units.
- indicate the same amount of a substance in two different units.

In the United States, the contents of many packaged foods are listed in both U.S. and metric units.

Equalities and Significant Figures

The numbers in any equality between two metric units or between two U.S. system units are definitions.

Because numbers in a definition are exact, they are not used to determine significant figures (SFs).

$$1 g = 1000 mg$$

 $1 ft = 12 in.$
 $1 min = 60 s$

Equalities and Significant Figures

When an equality consists of a metric unit and a U.S. unit, one of the numbers in the equality is obtained by measurement and counts toward the significant figures (SFs) in the answer.

$$454 g = 1 lb$$

 $946 mL = 1 qt$
 $39.4 in. = 1 m$

Exception: The equality 1 in. = 2.54 cm has been defined as an exact relationship, and therefore 2.54 is an exact number.

CORE CHEMISTRY SKILL

Conversion Factors

Writing Conversion Factors from Equalities

Any equality can be written as fractions called **conversion factors**. Be sure to include units when you write conversion factors.

Conversion Factors for the Equality 1 h = 60 min

$$\frac{\text{Numerator}}{\text{Denominator}} \xrightarrow{\longrightarrow} \frac{60 \text{ min}}{1 \text{ h}} \text{ and } \frac{1 \text{ h}}{60 \text{ min}}$$

These conversion factors are read as "60 minutes per hour" and "1 hour per 60 minutes." The *per* means "divide."

Some Common Equalities

TABLE 2.7 Some Common Equalities

Quantity	Metric (SI)	U.S.	Metric-U.S.
Length	1 km = 1000 m	1 ft = 12 in.	2.54 cm = 1 in. (exact)
	1 m = 1000 mm	1 yd = 3 ft	1 m = 39.4 in.
	1 cm = 10 mm	1 mi = 5280 ft	1 km = 0.621 mi
Volume	1 L = 1000 mL	1 qt = 4 cups	946 mL = 1 qt
	1 dL = 100 mL	1 qt = 2 pt	1 L = 1.06 qt
	$1 \text{ mL} = 1 \text{ cm}^3$	1 gal = 4 qt	473 mL = 1 pt
	$1 \text{ mL} = 1 \text{ cc}^*$		5 mL = 1 t (tsp)*
			$15 \text{ mL} = 1 \text{ T (tbsp)}^*$
Mass	1 kg = 1000 g	1 lb = 16 oz	1 kg = 2.20 lb
	1 g = 1000 mg		454 g = 1 lb
	1 mg = 1000 mcg*		
Time	1 h = 60 min	1 h = 60 min	
	$1 \min = 60 \text{ s}$	$1 \min = 60 \text{ s}$	

^{*}Used in medicine.

Writing Conversion Factors

We can write

metric conversion factors:

$$1 \text{ m} = 100 \text{ cm}$$
 $\frac{100 \text{ cm}}{1 \text{ m}}$ and $\frac{1 \text{ m}}{100 \text{ cm}}$

metric–U.S. system conversion factors:

1 kg = 2.20 lb
$$\frac{2.20 \text{ lb}}{1 \text{ kg}}$$
 and $\frac{1 \text{ kg}}{2.20 \text{ lb}}$

Write the equality and two conversion factors for each of the following pairs of units:

A. liters and milliliters

B. inches and meters

C. milligrams and micrograms

Conversion Factors Within a Problem

An equality may also be stated within a problem that only applies to that problem.

1. The car travels at 85 km/h.

Equality	Conversion Factors	Significant Figures or Exact
85 km = 1 h	$\frac{85 \text{ km}}{1 \text{ h}}$ and $\frac{1 \text{ h}}{85 \text{ km}}$	The 85 km is measured: It has two significant figures. The 1 h is exact.

Conversion Factors Within a Problem

2. The tablet contains 500 mg of vitamin C

Equality	Conversion Factors	Significant Figures or Exact	
1 tablet = 500 mg	500 mg vitamin C	The 500 mg is measured: It has one	
of vitamin C	1 tablet	significant figure. The 1 tablet is	
	and	exact.	
	1 tablet		
	500 mg vitamin C		

Conversion Factors from a Percentage

A percent (%) is written as a conversion factor by choosing a unit and expressing the numerical relationship of the parts of this unit to 100 parts of the whole.

• For example, a person has 18% body fat by mass.

Equality	Conversion Factors	Significant Figures or Exact
18 kg of body fat = 100 kg	18 kg body fat	The 18 kg is measured: It has two
of body mass	100 kg body mass	significant figures. The 100 kg is exact.
	and	
	100 kg body mass	
	18 kg body fat	

Conversion Factors from Dosage Problems

Equalities stated within dosage problems for medications can also be written as conversion factors.

Example: Keflex (cephalexin), an antibiotic used for respiratory and ear infections, is available in 250-mg capsules.

Equality	Conversion Factors	Significant Figures or Exact	
1 capsule = 250 mg of	250 mg Keflex	The 250 mg is measured: It has two	
Keflex	1 capsule	significant figures. The 1 capsule	
	and	is exact.	
	1 capsule		
	250 mg Keflex		

Write the equality and two conversion factors for each of the following:

- **A.** meters and decimeters
- **B.** jewelry that contains 18% gold
- C. One gallon of gas is \$2.40.

2.6 Problem Solving Using Unit Conversions

Agricultural fertilizers applied to a field provide nitrogen for plant growth.

Learning Goal Use conversion factors to change from one unit to another.

Problem Solving Using Conversion Factors

The problem-solving process begins by analyzing the problem in order to

- identify the given unit and needed unit
- write a plan that converts the given unit to the needed unit
- identify one or more conversion factors that cancel units and provide the needed unit
- set up the calculation

Solving Problems Using Conversion Factors

Example: If a person weighs 178 lb, what is the body mass in kilograms?

Solving Problems Using Conversion Factors

Example: If a person weighs 178 lb, what is the body mass in kilograms?

STEP 1 State the given and needed quantities.

ANALYZE	Given	Need	Connect
THE PROBLEM	178 lb	kilograms	conversion factor (kg/lb)

STEP 2 Write a plan to convert the given unit to the needed unit.

pounds U.S.-Metric kilograms

Solving Problems Using Conversion Factors

Example: If a person weighs 178 lb, what is the body mass in kilograms?

STEP 3 State the equalities and conversion factors.

1 kg = 2.20 lb
$$\frac{2.20 \text{ lb}}{1 \text{ kg}}$$
 and $\frac{1 \text{ kg}}{2.20 \text{ lb}}$

STEP 4 Set up the problem to cancel units and calculate the answer.

Exact
$$178 \text{ lb} \times \frac{1 \text{ kg}}{2.20 \text{ lb}} = 80.9 \text{ kg}$$
3 SFs 3 SFs 3 SFs

A rattlesnake is 2.44 m long. How many centimeters long is the snake?

Using Two or More Conversion Factors

In problem solving,

• two or more conversion factors are often needed to complete the change of units

Unit
$$1 \longrightarrow \text{Unit } 2 \longrightarrow \text{Unit } 3$$

- to set up these problems, one factor follows the other
- each factor is arranged to cancel the preceding unit until the needed unit is obtained

Given unit × Factor 1 × Factor 2 = Needed unit

Using Two or More Conversion Factors

Example: A doctor's order prescribed a dosage of 0.150 mg of Synthroid. If you only have 50.-mcg tablets in stock, how many tablets are required to provide the prescribed dosage?

STEP 1 State the given and needed quantities.

ANALYZE Given Need Connect
THE PROBLEM 0.150 mg number of 1 tablet = 50. mcg
of Synthroid tablets of Synthroid

STEP 2 Write a plan to convert the given unit to the needed unit.

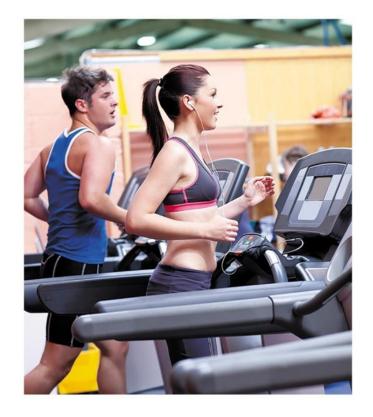
milligrams Metric factor micrograms Clinical factor number of tablets

Using Two or More Conversion Factors

Example: A doctor's order prescribed a dosage of 0.150 mg of Synthroid. If you only have 50.-mcg tablets in stock, how many tablets are required to provide the prescribed dosage?

STEP 3 State the equalities and conversion factors.

$$\frac{1 \text{ mg} = 1000 \text{ mcg}}{1 \text{ mg}} \quad \text{and} \quad \frac{1 \text{ mg}}{1000 \text{ mcg}} \quad \frac{50 \cdot \text{mcg Synthroid}}{1 \text{ tablet}} \quad \text{and} \quad \frac{1 \text{ tablet}}{50 \cdot \text{mcg Synthroid}}$$


STEP 4 Set up the problem to cancel units and calculate the answer.

$$0.150 \text{ mg Synthroid} \times \frac{1000 \text{ meg}}{1 \text{ mg}} \times \frac{1 \text{ tablet}}{50. \text{ mcg Synthroid}} = 3 \text{ tablets}$$

$$\frac{3 \text{ SFs}}{2 \text{ SFs}}$$

How many minutes are in 1.6 days?

If your pace on a treadmill is 65 m/min, how many minutes will it take for you to walk a distance of 7.5 km?

