\qquad Class: \qquad Date: \qquad

Stoichiometry Homework

Multiple Choice

Identify the choice that best completes the statement or answers the question. Please show all work for full credit. This assignmet is due 11/14/18 by 5:40 pm.

1. How many grams of $\mathrm{Li}_{3} \mathrm{~N}$ can be formed from 1.75 moles of Li ? Assume an excess of nitrogen.

$$
6 \mathrm{Li}(s)+\mathrm{N}_{2}(g) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(s)
$$

a. $\quad 18.3 \mathrm{~g} \mathrm{Li}_{3} \mathrm{~N}$
b. $\quad 20.3 \mathrm{~g} \mathrm{Li}_{3} \mathrm{~N}$
c. $\quad 58.3 \mathrm{~g} \mathrm{Li}_{3} \mathrm{~N}$
d. $\quad 61.0 \mathrm{~g} \mathrm{Li}_{3} \mathrm{~N}$
e. $\quad 15.1 \mathrm{~g} \mathrm{Li}_{3} \mathrm{~N}$
2. How many moles of oxygen are formed when 58.6 g of KNO_{3} decomposes according to the following reaction? The molar mass of KNO_{3} is $101.11 \mathrm{~g} / \mathrm{mol}$.

$$
4 \mathrm{KNO}_{3}(s) \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}(s)+2 \mathrm{~N}_{2}(g)+5 \mathrm{O}_{2}(g)
$$

a. $\quad 0.290 \mathrm{~mol} \mathrm{O}_{2}$
b. $\quad 0.580 \mathrm{~mol} \mathrm{O}_{2}$
c. $\quad 18.5 \mathrm{~mol} \mathrm{O}_{2}$
d. $\quad 0.724 \mathrm{~mol} \mathrm{O}_{2}$
e. $\quad 1.73 \mathrm{~mol} \mathrm{O}_{2}$
3. A 12.39 g sample of phosphorus reacts with 42.54 g of chlorine to form only phosphorus trichloride $\left(\mathrm{PCl}_{3}\right)$. If it is the only product, what mass of PCl_{3} is formed?
a. $\quad 30.15 \mathrm{~g}$
b. $\quad 54.93 \mathrm{~g}$
c. $\quad 140.01 \mathrm{~g}$
d. $\quad 79.71 \mathrm{~g}$
e. $\quad 91.86 \mathrm{~g}$
4. Determine the theoretical yield of HCl if 60.0 g of BCl_{3} and 37.5 g of $\mathrm{H}_{2} \mathrm{O}$ are reacted according to the following balanced reaction. A possibly useful molar mass is $\mathrm{BCl}_{3}=117.16 \mathrm{~g} / \mathrm{mol}$.

$$
\mathrm{BCl}_{3}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}(s)+3 \mathrm{HCl}(g)
$$

a. $\quad 75.9 \mathrm{~g} \mathrm{HCl}$
b. $\quad 132 \mathrm{~g} \mathrm{HCl}$
c. $\quad 187 \mathrm{~g} \mathrm{HCl}$
d. 56.0 g HCl
e. $\quad 25.3 \mathrm{~g} \mathrm{HCl}$
\qquad 5. Determine the molarity of a solution formed by dissolving 3.00 moles of NaCl in enough water to yield 4.00 L of solution.
a. $\quad 1.33 \mathrm{M}$
b. $\quad 2.00 \mathrm{M}$
c. $\quad 0.750 \mathrm{M}$
d. $\quad 3.00 \mathrm{M}$
e. $\quad 12.00 \mathrm{M}$
6. How many molecules of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right.$, molar mass $\left.=342.30 \mathrm{~g} / \mathrm{mol}\right)$ are contained in 14.3 mL of 0.140 M sucrose solution?
a. 8.29×10^{22} molecules $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
b. 1.21×10^{21} molecules $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
c. 6.15×10^{22} molecules $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
d. 1.63×10^{23} molecules $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
e. $\quad 5.90 \times 10^{24}$ molecules $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
7. According to the following reaction, what volume of 0.244 M KCl solution is required to react exactly with 50.0 mL of $0.210 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution?

$$
2 \mathrm{KCl}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{PbCl}_{2}(s)+2 \mathrm{KNO}_{3}(a q)
$$

a. $\quad 97.4 \mathrm{~mL}$
b. $\quad 116 \mathrm{~mL}$
c. $\quad 43.0 \mathrm{~mL}$
d. $\quad 86.1 \mathrm{~mL}$
e. $\quad 58.1 \mathrm{~mL}$
8. Determine the number of grams H_{2} formed when 250.0 mL of 0.743 M HCl solution reacts with 3.41 $\times 10^{23}$ atoms of Fe according to the following reaction.

$$
2 \mathrm{HCl}(a q)+\mathrm{Fe}(s) \rightarrow \mathrm{H}_{2}(g)+\mathrm{FeCl}_{2}(a q)
$$

a. $\quad 0.374 \mathrm{~g}$
b. $\quad 1.33 \mathrm{~g}$
c. $\quad 1.14 \mathrm{~g}$
d. 0.187 g
e. $\quad 1.51 \mathrm{~g}$
9. What mass (ing) of AgCl is formed from the reaction of 75.0 mL of a $0.078 \mathrm{M} \mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution with 55.0 mL of $0.109 \mathrm{M} \mathrm{MgCl}_{2}$ solution?

$$
2 \mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{MgCl}_{2}(a q) \rightarrow 2 \mathrm{AgCl}(s)+\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}(a q)
$$

a. $\quad 0.838 \mathrm{~g}$
b. $\quad 1.72 \mathrm{~g}$
c. $\quad 0.859 \mathrm{~g}$
d. 2.56 g
e. $\quad 1.70 \mathrm{~g}$

\qquad

10. According to the following balanced reaction, how many moles of NO are formed from 12.66 moles of NO_{2} if there is plenty of water present?

$$
3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{HNO}_{3}(a q)+\mathrm{NO}(g)
$$

a. $\quad 37.98$ moles NO
b. $\quad 18.99$ moles NO
c. $\quad 12.66$ moles NO
d. 8.44 moles NO
e. $\quad 4.22$ moles NO
11. Consider the following reaction. How many moles of oxygen are required to produce 4.00 moles of water? Assume that there is excess $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}$ present.

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{SH}(l)+6 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+\mathrm{SO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

a. $\quad 2.67$ moles O_{2}
b. $\quad 6.00$ moles O_{2}
c. $\quad 4.00$ moles O_{2}
d. $\quad 16.0$ moles O_{2}
e. $\quad 1.00$ moles O_{2}
12. Lithium and nitrogen react to produce lithium nitride:

$$
6 \mathrm{Li}(s)+\mathrm{N}_{2}(g) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(s)
$$

How many moles of N_{2} are needed to react with 0.550 mol of lithium?
a. 3.30
b. 0.550
c. 0.183
d. 1.65
e. 0.0917
13. Automotive air bags inflate when sodium azide decomposes explosively to its constituent elements:

$$
2 \mathrm{NaN}_{3}(s) \rightarrow 2 \mathrm{Na}(s)+3 \mathrm{~N}_{2}(g)
$$

How many grams of sodium azide are required to produce 25.0 g of nitrogen?
a. $\quad 1.34$
b. 0.595
c. 58.0
d. 38.7
e. 87.0
14. Balance the chemical equation given below, and determine the number of moles of iodine that react with 40.0 g of aluminum.
a. $\quad 0.9 \overline{88 \mathrm{~mol}}$
b. $\quad 2.22 \mathrm{~mol}$
c. $\quad 2.97 \mathrm{~mol}$
d. $\quad 4.45 \mathrm{~mol}$
15. If the percent yield for the following reaction is 65.0%, how many grams of KClO_{3} are needed to produce 4.00 g of O_{2} ?

$$
2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)
$$

a. $\quad 6.63 \mathrm{~g}$
b. $\quad 10.2 \mathrm{~g}$
c. $\quad 15.7 \mathrm{~g}$
d. 35.3 g

